The following postfix expression with single digit operands is evaluated using a stack:

8 2 3 ^ / 2 3 * + 5 1 * -

Note that ^ is the exponentiation operator. The top two elements of the stack after the first * is evaluated are:

**(A)** 6, 1

**(B)** 5, 7

**(C)** 3, 2

**(D)** 1, 5

**Answer:** **(A)** **Explanation:** The algorithm for evaluating any postfix expression is fairly straightforward:

1. While there are input tokens left o Read the next token from input. o If the token is a value + Push it onto the stack. o Otherwise, the token is an operator (operator here includes both operators, and functions). * It is known a priori that the operator takes n arguments. * If there are fewer than n values on the stack(Error)The user has not input sufficient values in the expression. * Else, Pop the top n values from the stack. * Evaluate the operator, with the values as arguments. * Push the returned results, if any, back onto the stack. 2. If there is only one value in the stack o That value is the result of the calculation. 3. If there are more values in the stack o(Error)The user input has too many values.

Source for algorithm: http://en.wikipedia.org/wiki/Reverse_Polish_notation#The_postfix_algorithm

Let us run the above algorithm for the given expression.

First three tokens are values, so they are simply pushed. After pushing 8, 2 and 3, the stack is as follows

8, 2, 3

When ^ is read, top two are popped and power(2^3) is calculated

8, 8

When / is read, top two are popped and division(8/8) is performed

1

Next two tokens are values, so they are simply pushed. After pushing 2 and 3, the stack is as follows

1, 2, 3

When * comes, top two are popped and multiplication is performed.

1, 6