Related Articles
Cycle Sort
• Difficulty Level : Medium
• Last Updated : 25 Mar, 2021

Cycle sort is an in-place sorting Algorithm, unstable sorting algorithm, a comparison sort that is theoretically optimal in terms of the total number of writes to the original array.

• It is optimal in terms of number of memory writes. It minimizes the number of memory writes to sort (Each value is either written zero times, if it’s already in its correct position, or written one time to its correct position.)
• It is based on the idea that array to be sorted can be divided into cycles. Cycles can be visualized as a graph. We have n nodes and an edge directed from node i to node j if the element at i-th index must be present at j-th index in the sorted array.
Cycle in arr[] = {2, 4, 5, 1, 3}

• Cycle in arr[] = {4, 3, 2, 1}

•

We one by one consider all cycles. We first consider the cycle that includes first element. We find correct position of first element, place it at its correct position, say j. We consider old value of arr[j] and find its correct position, we keep doing this till all elements of current cycle are placed at correct position, i.e., we don’t come back to cycle starting point.

Explanation :

arr[] = {10, 5, 2, 3}
index =  0   1   2   3
cycle_start = 0
item = 10 = arr[0]

Find position where we put the item
pos = cycle_start
i=pos+1
while(i<n)
if (arr[i] < item)
pos++;

We put 10 at arr[3] and change item to
old value of arr[3].
arr[] = {10, 5, 2, 10}
item = 3

Find position where we put the item = 3
we swap item with element at arr[1] now
arr[] = {10, 3, 2, 10}
item = 5

Again rotate rest cycle that start with index '0' and item = 5
we swap item with element at arr[2].
arr[] = {10, 3, 5, 10 }
item = 2

Again rotate rest cycle that start with index '0' and item = 2
arr[] = {2, 3,  5, 10}

Above is one iteration for cycle_stat = 0.
Repeat above steps for cycle_start = 1, 2, ..n-2

CPP

 // C++ program to implement cycle sort#include using namespace std; // Function sort the array using Cycle sortvoid cycleSort(int arr[], int n){    // count number of memory writes    int writes = 0;     // traverse array elements and put it to on    // the right place    for (int cycle_start = 0; cycle_start <= n - 2; cycle_start++) {        // initialize item as starting point        int item = arr[cycle_start];         // Find position where we put the item. We basically        // count all smaller elements on right side of item.        int pos = cycle_start;        for (int i = cycle_start + 1; i < n; i++)            if (arr[i] < item)                pos++;         // If item is already in correct position        if (pos == cycle_start)            continue;         // ignore all duplicate  elements        while (item == arr[pos])            pos += 1;         // put the item to it's right position        if (pos != cycle_start) {            swap(item, arr[pos]);            writes++;        }         // Rotate rest of the cycle        while (pos != cycle_start) {            pos = cycle_start;             // Find position where we put the element            for (int i = cycle_start + 1; i < n; i++)                if (arr[i] < item)                    pos += 1;             // ignore all duplicate  elements            while (item == arr[pos])                pos += 1;             // put the item to it's right position            if (item != arr[pos]) {                swap(item, arr[pos]);                writes++;            }        }    }     // Number of memory writes or swaps    // cout << writes << endl ;} // Driver program to test above functionint main(){    int arr[] = { 1, 8, 3, 9, 10, 10, 2, 4 };    int n = sizeof(arr) / sizeof(arr[0]);    cycleSort(arr, n);     cout << "After sort : " << endl;    for (int i = 0; i < n; i++)        cout << arr[i] << " ";    return 0;}

Java

 // Java program to implement cycle sort import java.util.*;import java.lang.*; class GFG {    // Function sort the array using Cycle sort    public static void cycleSort(int arr[], int n)    {        // count number of memory writes        int writes = 0;         // traverse array elements and put it to on        // the right place        for (int cycle_start = 0; cycle_start <= n - 2; cycle_start++) {            // initialize item as starting point            int item = arr[cycle_start];             // Find position where we put the item. We basically            // count all smaller elements on right side of item.            int pos = cycle_start;            for (int i = cycle_start + 1; i < n; i++)                if (arr[i] < item)                    pos++;             // If item is already in correct position            if (pos == cycle_start)                continue;             // ignore all duplicate elements            while (item == arr[pos])                pos += 1;             // put the item to it's right position            if (pos != cycle_start) {                int temp = item;                item = arr[pos];                arr[pos] = temp;                writes++;            }             // Rotate rest of the cycle            while (pos != cycle_start) {                pos = cycle_start;                 // Find position where we put the element                for (int i = cycle_start + 1; i < n; i++)                    if (arr[i] < item)                        pos += 1;                 // ignore all duplicate elements                while (item == arr[pos])                    pos += 1;                 // put the item to it's right position                if (item != arr[pos]) {                    int temp = item;                    item = arr[pos];                    arr[pos] = temp;                    writes++;                }            }        }    }     // Driver program to test above function    public static void main(String[] args)    {        int arr[] = { 1, 8, 3, 9, 10, 10, 2, 4 };        int n = arr.length;        cycleSort(arr, n);         System.out.println("After sort : ");        for (int i = 0; i < n; i++)            System.out.print(arr[i] + " ");    }} // Code Contributed by Mohit Gupta_OMG <(0_o)>

Python3

 # Python program to implement cycle sort def cycleSort(array):  writes = 0     # Loop through the array to find cycles to rotate.  for cycleStart in range(0, len(array) - 1):    item = array[cycleStart]         # Find where to put the item.    pos = cycleStart    for i in range(cycleStart + 1, len(array)):      if array[i] < item:        pos += 1         # If the item is already there, this is not a cycle.    if pos == cycleStart:      continue         # Otherwise, put the item there or right after any duplicates.    while item == array[pos]:      pos += 1    array[pos], item = item, array[pos]    writes += 1         # Rotate the rest of the cycle.    while pos != cycleStart:             # Find where to put the item.      pos = cycleStart      for i in range(cycleStart + 1, len(array)):        if array[i] < item:          pos += 1             # Put the item there or right after any duplicates.      while item == array[pos]:        pos += 1      array[pos], item = item, array[pos]      writes += 1     return writes   # driver codearr = [1, 8, 3, 9, 10, 10, 2, 4 ]n = len(arr)cycleSort(arr) print("After sort : ")for i in range(0, n) :    print(arr[i], end = ' ') # Code Contributed by Mohit Gupta_OMG <(0_o)>

C#

 // C# program to implement cycle sortusing System; class GFG {         // Function sort the array using Cycle sort    public static void cycleSort(int[] arr, int n)    {        // count number of memory writes        int writes = 0;         // traverse array elements and        // put it to on the right place        for (int cycle_start = 0; cycle_start <= n - 2; cycle_start++)        {            // initialize item as starting point            int item = arr[cycle_start];             // Find position where we put the item.            // We basically count all smaller elements            // on right side of item.            int pos = cycle_start;            for (int i = cycle_start + 1; i < n; i++)                if (arr[i] < item)                    pos++;             // If item is already in correct position            if (pos == cycle_start)                continue;             // ignore all duplicate elements            while (item == arr[pos])                pos += 1;             // put the item to it's right position            if (pos != cycle_start) {                int temp = item;                item = arr[pos];                arr[pos] = temp;                writes++;            }             // Rotate rest of the cycle            while (pos != cycle_start) {                pos = cycle_start;                 // Find position where we put the element                for (int i = cycle_start + 1; i < n; i++)                    if (arr[i] < item)                        pos += 1;                 // ignore all duplicate elements                while (item == arr[pos])                    pos += 1;                 // put the item to it's right position                if (item != arr[pos]) {                    int temp = item;                    item = arr[pos];                    arr[pos] = temp;                    writes++;                }            }        }    }     // Driver program to test above function    public static void Main()    {        int[] arr = { 1, 8, 3, 9, 10, 10, 2, 4 };        int n = arr.Length;                 // Function calling        cycleSort(arr, n);         Console.Write("After sort : ");        for (int i = 0; i < n; i++)            Console.Write(arr[i] + " ");    }} // This code is contributed by Nitin Mittal

Javascript



Output:

After sort :
1 2 3 4 8 9 10 10

Time Complexity : O(n2
Worst Case : O(n2
Average Case: O(n2
Best Case : O(n2)
This sorting algorithm is best suited for situations where memory write or swap operations are costly.

Reference:
https://en.wikipedia.org/wiki/Cycle_sort
This article is contributed by Nishant Singh. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.