C# Program for Block swap algorithm for array rotation
Write a function rotate(ar[], d, n) that rotates arr[] of size n by d elements.
Rotation of the above array by 2 will make array
Algorithm :
Initialize A = arr[0..d-1] and B = arr[d..n-1] 1) Do following until size of A is equal to size of B a) If A is shorter, divide B into Bl and Br such that Br is of same length as A. Swap A and Br to change ABlBr into BrBlA. Now A is at its final place, so recur on pieces of B. b) If A is longer, divide A into Al and Ar such that Al is of same length as B Swap Al and B to change AlArB into BArAl. Now B is at its final place, so recur on pieces of A. 2) Finally when A and B are of equal size, block swap them.
Recursive Implementation:
C#
using System; class GFG{ // Wrapper over the recursive function // leftRotateRec() // It left rotates []arr by d. public static void leftRotate( int []arr, int d, int n) { leftRotateRec(arr, 0, d, n); } public static void leftRotateRec( int []arr, int i, int d, int n) { // Return If number of elements // to be rotated is zero or equal // to array size if (d == 0 || d == n) return ; // If number of elements to be rotated // is exactly half of array size if (n - d == d) { swap(arr, i, n - d + i, d); return ; } // If A is shorter if (d < n - d) { swap(arr, i, n - d + i, d); leftRotateRec(arr, i, d, n - d); } // If B is shorter else { swap(arr, i, d, n - d); // This is tricky leftRotateRec(arr, n - d + i, 2 * d - n, d); } } // UTILITY FUNCTIONS // Function to print an array public static void printArray( int []arr, int size) { int i; for (i = 0; i < size; i++) Console.Write(arr[i] + " " ); Console.WriteLine(); } // This function swaps d elements // starting at index fi with d elements // starting at index si public static void swap( int []arr, int fi, int si, int d) { int i, temp; for (i = 0; i < d; i++) { temp = arr[fi + i]; arr[fi + i] = arr[si + i]; arr[si + i] = temp; } } // Driver Code public static void Main(String[] args) { int []arr = { 1, 2, 3, 4, 5, 6, 7 }; leftRotate(arr, 2, 7); printArray(arr, 7); } } // This code is contributed by amal kumar choubey |
Output:
3 5 4 6 7 1 2
Time Complexity: O(N), where N represents the size of the given array.
Auxiliary Space: O(N), due to recursive stack space.
Iterative Implementation:
Here is iterative implementation of the same algorithm. Same utility function swap() is used here.
C#
// C# code for above implementation static void leftRotate( int []arr, int d, int n) { int i, j; if (d == 0 || d == n) return ; i = d; j = n - d; while (i != j) { if (i < j) /*A is shorter*/ { swap(arr, d-i, d+j-i, i); j -= i; } else /*B is shorter*/ { swap(arr, d-i, d, j); i -= j; } } /*Finally, block swap A and B*/ swap(arr, d-i, d, i); } // This code is contributed by Rajput-Ji |
Time Complexity: O(N), where N represents the size of the given array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Please see following posts for other methods of array rotation:
https://www.geeksforgeeks.org/array-rotation/
https://www.geeksforgeeks.org/program-for-array-rotation-continued-reversal-algorithm/
References:
http://www.cs.bell-labs.com/cm/cs/pearls/s02b.pdf
Please write comments if you find any bug in the above programs/algorithms or want to share any additional information about the block swap algorithm.
Please refer complete article on Block swap algorithm for array rotation for more details!