Skip to content
Related Articles

Related Articles

C# Program for Block swap algorithm for array rotation

Improve Article
Save Article
Like Article
  • Last Updated : 25 May, 2022

Write a function rotate(ar[], d, n) that rotates arr[] of size n by d elements. 

Array

Rotation of the above array by 2 will make array

ArrayRotation1

Algorithm : 

Initialize A = arr[0..d-1] and B = arr[d..n-1]
1) Do following until size of A is equal to size of B

  a)  If A is shorter, divide B into Bl and Br such that Br is of same 
       length as A. Swap A and Br to change ABlBr into BrBlA. Now A
       is at its final place, so recur on pieces of B.  

   b)  If A is longer, divide A into Al and Ar such that Al is of same 
       length as B Swap Al and B to change AlArB into BArAl. Now B
       is at its final place, so recur on pieces of A.

2)  Finally when A and B are of equal size, block swap them.

Recursive Implementation:

C#




using System;
 
class GFG{
     
// Wrapper over the recursive function
// leftRotateRec()
// It left rotates []arr by d.
public static void leftRotate(int []arr,
                              int d, int n)
{
    leftRotateRec(arr, 0, d, n);
}
 
public static void leftRotateRec(int []arr, int i,
                                 int d, int n)
{
     
    // Return If number of elements
    // to be rotated is zero or equal
    // to array size
    if(d == 0 || d == n)
        return;
     
    // If number of elements to be rotated
    // is exactly half of array size
    if(n - d == d)
    {
        swap(arr, i, n - d + i, d);
        return;
    }
     
    // If A is shorter
    if(d < n - d)
    {
        swap(arr, i, n - d + i, d);
        leftRotateRec(arr, i, d, n - d);    
    }
     
    // If B is shorter
    else
    {
        swap(arr, i, d, n - d);
         
        // This is tricky
        leftRotateRec(arr, n - d + i,
                       2 * d - n, d);
    }
}
 
// UTILITY FUNCTIONS
// Function to print an array
public static void printArray(int []arr,
                              int size)
{
    int i;
    for(i = 0; i < size; i++)
        Console.Write(arr[i] + " ");
         
    Console.WriteLine();
}
 
// This function swaps d elements
// starting at index fi with d elements
// starting at index si
public static void swap(int []arr, int fi,
                        int si, int d)
{
    int i, temp;
    for(i = 0; i < d; i++)
    {
        temp = arr[fi + i];
        arr[fi + i] = arr[si + i];
        arr[si + i] = temp;
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 3, 4, 5, 6, 7 };
     
    leftRotate(arr, 2, 7);
    printArray(arr, 7);    
}
}
 
// This code is contributed by amal kumar choubey

Output:

3 5 4 6 7 1 2

Time Complexity: O(N), where N represents the size of the given array.
Auxiliary Space: O(N), due to recursive stack space.

Iterative Implementation: 
Here is iterative implementation of the same algorithm. Same utility function swap() is used here.

C#




// C# code for above implementation
static void leftRotate(int []arr, int d, int n)
{
    int i, j;
    if(d == 0 || d == n)
        return;
    i = d;
    j = n - d;
    while (i != j)
    {
        if(i < j) /*A is shorter*/
        {
            swap(arr, d-i, d+j-i, i);
            j -= i;
        }
        else /*B is shorter*/
        {
            swap(arr, d-i, d, j);
            i -= j;
        }
         
    }
     
    /*Finally, block swap A and B*/
    swap(arr, d-i, d, i);
}
 
// This code is contributed by Rajput-Ji

Time Complexity: O(N), where N represents the size of the given array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Please see following posts for other methods of array rotation: 
https://www.geeksforgeeks.org/array-rotation/ 
https://www.geeksforgeeks.org/program-for-array-rotation-continued-reversal-algorithm/

References: 
http://www.cs.bell-labs.com/cm/cs/pearls/s02b.pdf
Please write comments if you find any bug in the above programs/algorithms or want to share any additional information about the block swap algorithm.

Please refer complete article on Block swap algorithm for array rotation for more details!


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!