Skip to content
Related Articles

Related Articles

Improve Article

Creating and Using Serializers – Django REST Framework

  • Last Updated : 10 Sep, 2021
Geek Week

In Django REST Framework the very concept of Serializing is to convert DB data to a datatype that can be used by javascript. Serializers allow complex data such as querysets and model instances to be converted to native Python datatypes that can then be easily rendered into JSON, XML or other content types. Serializers also provide deserialization, allowing parsed data to be converted back into complex types, after first validating the incoming data. The serializers in REST framework work very similarly to Django’s Form and ModelForm classes. 

To check how to setup Django RESt Framework and create a API visit – How to Create a basic API using Django Rest Framework ? 

Creating a basic Serializer

To create a basic serializer one needs to import serializers class from rest_framework and define fields for a serializer just like creating a form or model in Django. 

Example 

Python3




# import serializer from rest_framework
from rest_framework import serializers
 
# create a serializer
class CommentSerializer(serializers.Serializer):
    # initialize fields
    email = serializers.EmailField()
    content = serializers.CharField(max_length = 200)
    created = serializers.DateTimeField()

This way one can declare serializer for any particular entity or object based on fields required. Serializers can be used to serialize as well as deserialize the data.



Using Serializer to serialize data

One can now use CommentSerializer to serialize a comment, or list of comments. Again, using the Serializer class looks a lot like using a Form class. Let’s create a Comment class first to create a object of type comment that can be understood by our serializer.  

Python3




# import datetime object
from datetime import datetime
 
# create a class
class Comment(object):
    def __init__(self, email, content, created = None):
        self.email = email
        self.content = content
        self.created = created or datetime.now()
# create a object
comment = Comment(email ='leila@example.com', content ='foo bar')

Now that our object is ready, let’s try serializing this comment object. Run following command, 

Python manage.py shell

Now run the following code  

# import comment serializer
>>> from apis.serializers import CommentSerializer

# import datetime for date and time
>>> from datetime import datetime

# create a object
>>> class Comment(object):
...     def __init__(self, email, content, created=None):
...         self.email = email
...         self.content = content
...         self.created = created or datetime.now()
... 

# create a comment object
>>> comment = Comment(email='leila@example.com', content='foo bar')

# serialize the data
>>> serializer = CommentSerializer(comment)

# print serialized data
>>> serializer.data

Now let’s check output for this, 

creating-a-serializer

We can convert this data to JSON or XML format using Python’s inbuilt functions or rest framework’s parsers. 

Python3




# import JSON Renderer
from rest_framework.renderers import JSONRenderer
 
# convert data to JSON
json = JSONRenderer().render(serializer.data)

Using Serializer to deserialize data

Deserialization is similar to Serialization. It means to convert the data from JSON format to a given data type. First we parse a stream into Python native datatypes… (define which datatype to deserialize to….) 
First we need to convert this json data back to data that can be understood by the serializer for deserializing, 

Python3




import io
from rest_framework.parsers import JSONParser
 
stream = io.BytesIO(json)
data = JSONParser().parse(stream)

and Now let’s deserialize the data back to its original state

Python3




serializer = CommentSerializer(data = data)
serializer.is_valid()
# True
serializer.validated_data

Let’s check output and if data has been deserialized – 

deserializing-rest-framework

 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :