Create Heatmaps using graph_objects class in Plotly

A Plotly is a Python library that is used to design graphs, especially interactive graphs. It can plot various graphs and charts like histogram, barplot, boxplot, spreadplot, and many more. It is mainly used in data analysis as well as financial analysis. plotly is an interactive visualization library.

Heatmaps using graph_objects

A heatmap is a two-dimensional graphical representation of data where the individual values that are contained in a matrix are represented as colors.

Syntax: plotly.graph_objects.Heatmap(arg=None, autocolorscale=None, colorbar=None, colorscale=None, x=None, y=None, z=None, **kwargs)

Parameters:

arg: dict of properties compatible with this constructor



autocolorscale: Determines whether the colorscale is a default palette (autocolorscale: true) or the palette determined by colorscale. 

colorbar: plotly.graph_objects.heatmap.ColorBar instance or dict with compatible properties

colorscale: Sets the colorscale. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string.

x: Sets the x coordinates.

y: Sets the y coordinates.

z: Sets the z coordinates.

Example:

Python3



filter_none

edit
close

play_arrow

link
brightness_4
code

import plotly.graph_objects as go
  
feature_x = np.arange(0, 50, 2
feature_y = np.arange(0, 50, 3
  
# Creating 2-D grid of features 
[X, Y] = np.meshgrid(feature_x, feature_y) 
  
Z = np.cos(X / 2) + np.sin(Y / 4
  
fig = go.Figure(data =
     go.Heatmap(x = feature_x, y = feature_y, z = Z,))
  
fig.show()

chevron_right


Output:

Presenting Heat map with Unequal Block Sizes

In plotly, it is possible to show the unequal sizes of the blocks as to make the data differentiate between each other to make it more clear while presenting as the data has different height and width compared to each other.

Example:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

import plotly.graph_objects as go
  
feature_x = np.arange(0, 50, 2)
feature_y = np.arange(0, 50, 3)
  
# Creating 2-D grid of features
[X, Y] = np.meshgrid(feature_x, feature_y)
  
Z = np.cos(X / 2) + np.sin(Y / 4)
  
fig = go.Figure(data=go.Heatmap(
  x=feature_x, y=feature_y, z=Z,))
  
fig.update_layout(
    margin=dict(t=200, r=200, b=200, l=200),
    showlegend=False,
    width=700, height=700,
    autosize=False)
  
  
fig.show()

chevron_right


Output:




My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.