Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Create Error Bars in Plotly – Python

  • Last Updated : 21 Oct, 2021

Plotly is a Python library that is used to design graphs, especially interactive graphs. It can plot various graphs and charts like histogram, barplot, boxplot, spreadplot, and many more. It is mainly used in data analysis as well as financial analysis. plotly is an interactive visualization library.

Error Bars in Plotly

For functions representing 2D data points such as px.scatter, px.line, px.bar, etc., error bars are given as a column name which is the value of the error_x (for the error on x position) and error_y (for the error on y position). Error bars are the graphical presentation alternation of data and used on graphs to imply the error or uncertainty in a reported capacity.

Example 1: In this example, we will plot a simple error plot using tips() data set.

Python3




import plotly.express as px
  
  
df = px.data.tips()
df["error"] = df["total_bill"]/100
  
fig = px.scatter(df, x="total_bill", y="day", color="sex",
                 error_x="error", error_y="error")
fig.show()

Output:

Example 2:

Python3




import plotly.express as px
  
df = px.data.tips()
df["e"] = df["total_bill"]/100
  
fig = px.bar(df, x="total_bill", y="day", color="sex",
             error_x="e", error_y="e")
fig.show()

Output:

The above example my seems something meshed up, but once you zoom it you’ll understand the graph more accurately.

Example 3: In this example, we will see Asymmetric Error Bars, Asymmetric errors arise when there is a non-linear dependence of a result.

Python3




import plotly.express as px
  
  
df = px.data.tips()
df["error"] = df["total_bill"]/100
df["W_error"] = df["total_bill"] - df["tip"
  
fig = px.scatter(df, x="total_bill", y="day", color="sex",
                 error_x="error", error_y="W_error")
fig.show()

Output:

Example 4: In this example, we will see Symmetric Error Bars, Symmetric mean absolute percentage error is an accuracy measure based on percentage errors. 

Python3




import plotly.graph_objects as go
x_data = [1, 2, 3, 4]
y_data = [3, 5, 2, 6]
  
fig = go.Figure(data = go.Scatter(
        x= x_data,
        y= y_data,
        error_y = dict(
              
              # value of error bar given in data coordinates
            type ='data',
            array = [1, 2, 3,4],
            visible = True)
    ))
fig.show()

Output:

Example 5: In this example, we will see how to coloring and styling the error bar using their attributes.

Python3




import plotly.express as px
import plotly.graph_objects as go
import numpy as np
  
X = np.linspace(-1, 1, 100)
Y = np.sinc(X)
  
x = [-0.89, -0.24, -0.0, 0.41, 0.89, ]
y = [0.36, 0.75, 1.03, 0.65, 0.28, ]
  
fig = go.Figure()
fig.add_trace(go.Scatter(
    x=X, y=Y,
    name='error bar'
))
  
fig.add_trace(go.Scatter(
    x=x, y=y,
    mode='markers',
    name='measured',
    error_y=dict(
        type='constant',
        value=0.1,
        color='green',
        thickness=1.5,
        width=3,
    ),
    error_x=dict(
        type='constant',
        value=0.2,
        color='blue',
        thickness=1.5,
        width=3,
    ),
    marker=dict(color='green', size=8)
))
  
fig.show()

Output:


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!