Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Create a Graph by connecting divisors from N to M and find shortest path

  • Last Updated : 18 May, 2021

Given two natural numbers N and M, Create a graph using these two natural numbers using relation that a number is connected to its largest factor other than itself. The task is to find the shortest path between these two numbers after creating a graph.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 6, M = 18
Output: 6 <–> 3 <–> 9 <–> 18
Explanation:
For N = 6, the connection of graph is:
6 — 3 — 1
For N = 18, the connection of graph is:
18 — 9 — 3 — 1
Combining the above two graphs, the shortest path is given by:
6 — 3 — 9 — 18



Input: N = 4, M = 8
Output: 4 <–> 8

Approach: The idea is to find the largest factors of each number other than itself and create a graph by connecting these factors and then find the shortest path between them. Below are the steps:

  1. Find the largest common factor of M and store it and set it as M.
  2. Now, until M doesn’t equal to 1 keep repeating the above steps and store the factors generated in an array mfactor[].
  3. Repeat step 1 and step 2 by taking N as the number and store the factors generated in an array nfactor[].
  4. Now, traverse both the arrays mfactor[] and mfactor[] and print the shortest path.

Below is the implementation of the above approach:

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check the number is
// prime or not
int isprm(int n)
{
    // Base Cases
    if (n <= 1)
        return 0;
    if (n <= 3)
        return 1;
    if (n % 2 == 0 || n % 3 == 0)
        return 0;
 
    // Iterate till [5, sqrt(N)] to
    // detect primarility of numbers
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return 0;
    return 1;
}
 
// Function to print the shortest path
void shortestpath(int m, int n)
{
    // Use vector to store the factor
    // of m and n
    vector<int> mfactor, nfactor;
 
    // Use map to check if largest common
    // factor previously present or not
    map<int, int> fre;
 
    // First store m
    mfactor.push_back(m);
    fre[m] = 1;
 
    while (m != 1) {
 
        // Check whether m is prime or not
        if (isprm(m)) {
            mfactor.push_back(1);
            fre[1] = 1;
            m = 1;
        }
 
        // Largest common factor of m
        else {
            for (int i = 2;
                 i <= sqrt(m); i++) {
 
                // If m is divisible by i
                if (m % i == 0) {
 
                    // Store the largest
                    // common factor
                    mfactor.push_back(m / i);
                    fre[m / i] = 1;
                    m = (m / i);
                    break;
                }
            }
        }
    }
 
    // For number n
    nfactor.push_back(n);
 
    while (fre[n] != 1) {
 
        // Check whether n is prime
        if (isprm(n)) {
            nfactor.push_back(1);
            n = 1;
        }
 
        // Largest common factor of n
        else {
            for (int i = 2;
                 i <= sqrt(n); i++) {
                if (n % i == 0) {
 
                    // Store the largest
                    // common factor
                    nfactor.push_back(n / i);
                    n = (n / i);
                    break;
                }
            }
        }
    }
 
    // Print the path
    // Print factors from m
    for (int i = 0;
         i < mfactor.size(); i++) {
 
        // To avoid duplicate printing
        // of same element
        if (mfactor[i] == n)
            break;
 
        cout << mfactor[i]
             << " <--> ";
    }
 
    // Print the factors from n
    for (int i = nfactor.size() - 1;
         i >= 0; i--) {
        if (i == 0)
            cout << nfactor[i];
        else
            cout << nfactor[i]
                 << " <--> ";
    }
}
 
// Driver Code
int main()
{
    // Given N and M
    int m = 18, n = 19;
 
    // Function Call
    shortestpath(m, n);
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check the number is
// prime or not
static int isprm(int n)
{
     
    // Base Cases
    if (n <= 1)
        return 0;
    if (n <= 3)
        return 1;
    if (n % 2 == 0 || n % 3 == 0)
        return 0;
 
    // Iterate till [5, Math.sqrt(N)] to
    // detect primarility of numbers
    for(int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return 0;
         
    return 1;
}
 
// Function to print the shortest path
static void shortestpath(int m, int n)
{
     
    // Use vector to store the factor
    // of m and n
    Vector<Integer> mfactor = new Vector<>();
    Vector<Integer> nfactor = new Vector<>();
 
    // Use map to check if largest common
    // factor previously present or not
    HashMap<Integer, Integer> fre = new HashMap<>();
 
    // First store m
    mfactor.add(m);
    fre.put(m, 1);
 
    while (m != 1)
    {
 
        // Check whether m is prime or not
        if (isprm(m) != 0)
        {
            mfactor.add(1);
            fre.put(1, 1);
            m = 1;
        }
 
        // Largest common factor of m
        else
        {
            for(int i = 2;
                    i <= Math.sqrt(m); i++)
            {
 
                // If m is divisible by i
                if (m % i == 0)
                {
                     
                    // Store the largest
                    // common factor
                    mfactor.add(m / i);
                    fre.put(m / i, 1);
                    m = (m / i);
                    break;
                }
            }
        }
    }
 
    // For number n
    nfactor.add(n);
 
    while (fre.containsKey(n) && fre.get(n) != 1)
    {
         
        // Check whether n is prime
        if (isprm(n) != 0)
        {
            nfactor.add(1);
            n = 1;
        }
 
        // Largest common factor of n
        else
        {
            for(int i = 2;
                    i <= Math.sqrt(n); i++)
            {
                if (n % i == 0)
                {
 
                    // Store the largest
                    // common factor
                    nfactor.add(n / i);
                    n = (n / i);
                    break;
                }
            }
        }
    }
 
    // Print the path
    // Print factors from m
    for(int i = 0; i < mfactor.size(); i++)
    {
         
        // To astatic void duplicate printing
        // of same element
        if (mfactor.get(i) == n)
            break;
 
        System.out.print(mfactor.get(i) +
                         " <--> ");
    }
 
    // Print the factors from n
    for(int i = nfactor.size() - 1;
            i >= 0; i--)
    {
        if (i == 0)
            System.out.print(nfactor.get(i));
        else
            System.out.print(nfactor.get(i) +
                             " <--> ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given N and M
    int m = 18, n = 19;
 
    // Function call
    shortestpath(m, n);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program for the above approach
import math
 
# Function to check the number is
# prime or not
def isprm(n):
 
    # Base Cases
    if (n <= 1):
        return 0
    if (n <= 3):
        return 1
    if (n % 2 == 0 or n % 3 == 0):
        return 0
 
    # Iterate till [5, sqrt(N)] to
    # detect primarility of numbers
    i = 5
    while i * i <= n:
        if (n % i == 0 or n % (i + 2) == 0):
            return 0
             
        i += 6
         
    return 1
 
# Function to print the shortest path
def shortestpath(m, n):
 
    # Use vector to store the factor
    # of m and n
    mfactor = []
    nfactor = []
 
    # Use map to check if largest common
    # factor previously present or not
    fre = dict.fromkeys(range(n + 1), 0)
 
    # First store m
    mfactor.append(m)
    fre[m] = 1
 
    while (m != 1):
 
        # Check whether m is prime or not
        if (isprm(m)):
            mfactor.append(1)
            fre[1] = 1
            m = 1
 
        # Largest common factor of m
        else:
            sqt = (int)(math.sqrt(m))
            for i in range(2, sqt + 1):
 
                # If m is divisible by i
                if (m % i == 0):
 
                    # Store the largest
                    # common factor
                    mfactor.append(m // i)
                    fre[m // i] = 1
                    m = (m // i)
                    break
 
    # For number n
    nfactor.append(n)
 
    while (fre[n] != 1):
 
        # Check whether n is prime
        if (isprm(n)):
            nfactor.append(1)
            n = 1
         
        # Largest common factor of n
        else:
            sqt = (int)(math.sqrt(n))
            for i in range(2, sqt + 1):
                if (n % i == 0):
 
                    # Store the largest
                    # common factor
                    nfactor.append(n // i)
                    n = (n // i)
                    break
 
    # Print the path
    # Print factors from m
    for i in range(len(mfactor)):
 
        # To avoid duplicate printing
        # of same element
        if (mfactor[i] == n):
            break
 
        print(mfactor[i], end = " <--> ")
 
    # Print the factors from n
    for i in range(len(nfactor) - 1, -1, -1):
        if (i == 0):
            print (nfactor[i], end = "")
        else:
            print(nfactor[i], end = " <--> ")
                 
# Driver Code
if __name__ == "__main__":
     
    # Given N and M
    m = 18
    n = 19
 
    # Function call
    shortestpath(m, n)
 
# This code is contributed by chitranayal

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to check the number is
// prime or not
static int isprm(int n)
{
     
    // Base Cases
    if (n <= 1)
        return 0;
    if (n <= 3)
        return 1;
    if (n % 2 == 0 || n % 3 == 0)
        return 0;
 
    // Iterate till [5, Math.Sqrt(N)] to
    // detect primarility of numbers
    for(int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return 0;
         
    return 1;
}
 
// Function to print the shortest path
static void shortestpath(int m, int n)
{
     
    // Use vector to store the factor
    // of m and n
    List<int> mfactor = new List<int>();
    List<int> nfactor = new List<int>();
 
    // Use map to check if largest common
    // factor previously present or not
    Dictionary<int,
               int> fre = new Dictionary<int,
                                         int>();
 
    // First store m
    mfactor.Add(m);
    fre.Add(m, 1);
 
    while (m != 1)
    {
 
        // Check whether m is prime or not
        if (isprm(m) != 0)
        {
            mfactor.Add(1);
            if(!fre.ContainsKey(1))
                fre.Add(1, 1);
                 
            m = 1;
        }
 
        // Largest common factor of m
        else
        {
            for(int i = 2;
                    i <= Math.Sqrt(m); i++)
            {
 
                // If m is divisible by i
                if (m % i == 0)
                {
                     
                    // Store the largest
                    // common factor
                    mfactor.Add(m / i);
                    if(!fre.ContainsKey(m/i))
                        fre.Add(m / i, 1);
                         
                    m = (m / i);
                    break;
                }
            }
        }
    }
 
    // For number n
    nfactor.Add(n);
 
    while (fre.ContainsKey(n) && fre[n] != 1)
    {
         
        // Check whether n is prime
        if (isprm(n) != 0)
        {
            nfactor.Add(1);
            n = 1;
        }
 
        // Largest common factor of n
        else
        {
            for(int i = 2;
                    i <= Math.Sqrt(n); i++)
            {
                if (n % i == 0)
                {
 
                    // Store the largest
                    // common factor
                    nfactor.Add(n / i);
                    n = (n / i);
                    break;
                }
            }
        }
    }
 
    // Print the path
    // Print factors from m
    for(int i = 0; i < mfactor.Count; i++)
    {
         
        // To astatic void duplicate printing
        // of same element
        if (mfactor[i] == n)
            break;
 
        Console.Write(mfactor[i] +
                        " <--> ");
    }
 
    // Print the factors from n
    for(int i = nfactor.Count - 1;
            i >= 0; i--)
    {
        if (i == 0)
            Console.Write(nfactor[i]);
        else
            Console.Write(nfactor[i] +
                            " <--> ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given N and M
    int m = 18, n = 19;
 
    // Function call
    shortestpath(m, n);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




// Javascript program for the above approach
 
// Function to check the number is
// prime or not
function isprm(n)
{
    // Base Cases
    if (n <= 1)
        return 0;
    if (n <= 3)
        return 1;
    if (n % 2 == 0 || n % 3 == 0)
        return 0;
 
    // Iterate till [5, sqrt(N)] to
    // detect primarility of numbers
    for (let i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return 0;
    return 1;
}
 
// Function to print the shortest path
function shortestpath(m, n)
{
    // Use vector to store the factor
    // of m and n
    let mfactor = new Array()
    let nfactor = new Array()
 
    // Use map to check if largest common
    // factor previously present or not
    let fre = new Map();
 
    // First store m
    mfactor.push(m);
    fre[m] = 1;
 
    while (m != 1) {
 
        // Check whether m is prime or not
        if (isprm(m)) {
            mfactor.push(1);
            fre[1] = 1;
            m = 1;
        }
 
        // Largest common factor of m
        else {
            for (let i = 2;
                i <= Math.sqrt(m); i++) {
 
                // If m is divisible by i
                if (m % i == 0) {
 
                    // Store the largest
                    // common factor
                    mfactor.push(m / i);
                    fre[m / i] = 1;
                    m = (m / i);
                    break;
                }
            }
        }
    }
 
    // For number n
    nfactor.push(n);
 
    while (fre[n] != 1) {
 
        // Check whether n is prime
        if (isprm(n)) {
            nfactor.push(1);
            n = 1;
        }
 
        // Largest common factor of n
        else {
            for (let i = 2;
                i <= Math.sqrt(n); i++) {
                if (n % i == 0) {
 
                    // Store the largest
                    // common factor
                    nfactor.push(n / i);
                    n = (n / i);
                    break;
                }
            }
        }
    }
 
    // Print the path
    // Print factors from m
    for (let i = 0;
        i < mfactor.length; i++) {
 
        // To avoid duplicate printing
        // of same element
        if (mfactor[i] == n)
            break;
 
        document.write(mfactor[i] + " <--> ");
    }
 
    // Print the factors from n
    for (let i = nfactor.length - 1;
        i >= 0; i--) {
        if (i == 0)
            document.write(nfactor[i]);
        else
            document.write(nfactor[i] + " <--> ");
    }
}
 
// Driver Code
 
// Given N and M
let m = 18, n = 19;
 
// Function Call
shortestpath(m, n);
 
// This code is contributed by _saurabh_jaiswal
Output: 
18 <--> 9 <--> 3 <--> 1 <--> 19

Time Complexity: O(log (max(M, N))
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!