Skip to content
Related Articles

Related Articles

Create a DataFrame from a Numpy array and specify the index column and column headers
  • Last Updated : 28 Jul, 2020

Let us see how to create a DataFrame from a Numpy array. We will also learn how to specify the index and the column headers of the DataFrame.

Approach :

  1. Import the Pandas and Numpy modules.
  2. Create a Numpy array.
  3. Create list of index values and column values for the DataFrame.
  4. Create the DataFrame.
  5. Display the DataFrame.

Example 1 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# importiong the modules
import pandas as pd
import numpy as np
  
# creating the Numpy array
array = np.array([[1, 1, 1], [2, 4, 8], [3, 9, 27], 
                  [4, 16, 64], [5, 25, 125], [6, 36, 216], 
                  [7, 49, 343]])
  
# creating a list of index names
index_values = ['first', 'second', 'third',
                'fourth', 'fifth', 'sixth', 'seventh']
   
# creating a list of column names
column_values = ['number', 'squares', 'cubes']
  
# creating the dataframe
df = pd.DataFrame(data = array, 
                  index = index_values, 
                  columns = column_values)
  
# displaying the dataframe
print(df)

chevron_right


Output :

Example 2 :



filter_none

edit
close

play_arrow

link
brightness_4
code

# importiong the modules
import pandas as pd
import numpy as np
  
# creating the Numpy array
array = np.array([['Aditya', 20], ['Samruddhi', 15],
                  ['Rohan', 21], ['Anantha', 20], 
                  ['Abhinandan', 21]])
  
# creating a list of index names
index_values = ['A', 'B', 'C', 'D', 'E']
   
# creating a list of column names
column_values = ['Names', 'Age']
  
# creating the dataframe
df = pd.DataFrame(data = array, 
                  index = index_values, 
                  columns = column_values)
  
# displaying the dataframe
print(df)

chevron_right


Output :

Example 3 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# importiong the modules
import pandas as pd
import numpy as np
  
# creating the Numpy array
array = np.array([['CEO', 20, 5], ['CTO', 22, 4.5], 
                  ['CFO', 21, 3], ['CMO', 24, 2]])
  
# creating a list of index names
index_values = [1, 2, 3, 4]
   
# creating a list of column names
column_values = ['Names', 'Age'
                 'Net worth in Millions']
  
# creating the dataframe
df = pd.DataFrame(data = array, 
                  index = index_values, 
                  columns = column_values)
  
# displaying the dataframe
print(df)

chevron_right


Output :

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :