Given an unsorted vector arr, the task is to create a balanced binary search tree using the elements of the array.
Note: There can be more than one balanced BST. Forming any is acceptable
Examples:
Input: arr[] = { 2, 1, 3}
Output: 2 1 3
Explanation: The tree formed is show below. The preorder traversal is 2 1 3
2
/ \
1 3
Input: arr[] = {4, 3, 1, 2}
Output: 2 1 3 4
Explanation: The tree formed is
2
/ \
1 3
\
4
Another possible option can provide preorder traversal is 3 2 1 4
Approach: To solve this problem, follow the below steps:
- Firstly, we will sort the vector using the sort function.
- Now, get the Middle of the vector and make it root.
- Recursively do the same for the left half and the right half.
- Get the middle of the left half and make it the left child of the root created in step 2.
- Get the middle of the right half and make it the right child of the root created in step 2.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
class Node {
public :
Node* left;
int data;
Node* right;
Node( int d)
{
data = d;
left = right = NULL;
}
};
Node* createBST(vector< int > v, int start,
int end)
{
sort(v.begin(), v.end());
if (start > end)
return NULL;
int mid = (start + end) / 2;
Node* root = new Node(v[mid]);
root->left = createBST(v, start, mid - 1);
root->right = createBST(v, mid + 1, end);
return root;
}
vector< int > preNode, vec;
vector< int > preOrder(Node* node)
{
if (node == NULL) {
return vec;
}
preNode.push_back(node->data);
preOrder(node->left);
preOrder(node->right);
return preNode;
}
int main()
{
vector< int > v = { 4, 3, 1, 2 };
Node* root = createBST(v, 0, v.size() - 1);
vector< int > ans = preOrder(root);
for ( auto i : ans) {
cout << i << " " ;
}
return 0;
}
|
Java
import java.util.*;
class Node {
Node left;
int data;
Node right;
Node( int d) {
data = d;
left = right = null ;
}
}
class Main {
static List<Integer> preNode = new ArrayList<>();
static List<Integer> vec = new ArrayList<>();
static Node createBST(List<Integer> v, int start, int end) {
Collections.sort(v);
if (start > end)
return null ;
int mid = (start + end) / 2 ;
Node root = new Node(v.get(mid));
root.left = createBST(v, start, mid - 1 );
root.right = createBST(v, mid + 1 , end);
return root;
}
static List<Integer> preOrder(Node node) {
if (node == null ) {
return vec;
}
preNode.add(node.data);
preOrder(node.left);
preOrder(node.right);
return preNode;
}
public static void main(String[] args) {
List<Integer> v = Arrays.asList( 4 , 3 , 1 , 2 );
Node root = createBST(v, 0 , v.size() - 1 );
List<Integer> ans = preOrder(root);
for ( int i : ans) {
System.out.print(i + " " );
}
}
}
|
C#
using System;
using System.Collections.Generic;
using System.Linq;
class Node
{
public Node left;
public int data;
public Node right;
public Node( int d)
{
data = d;
left = right = null ;
}
}
class MainClass
{
static List< int > preNode = new List< int >();
static List< int > vec = new List< int >();
static Node createBST(List< int > v, int start, int end)
{
v.Sort();
if (start > end)
return null ;
int mid = (start + end) / 2;
Node root = new Node(v[mid]);
root.left = createBST(v, start, mid - 1);
root.right = createBST(v, mid + 1, end);
return root;
}
static List< int > preOrder(Node node)
{
if (node == null )
{
return vec;
}
preNode.Add(node.data);
preOrder(node.left);
preOrder(node.right);
return preNode;
}
public static void Main( string [] args)
{
List< int > v = new List< int > { 4, 3, 1, 2 };
Node root = createBST(v, 0, v.Count - 1);
List< int > ans = preOrder(root);
foreach ( int i in ans)
{
Console.Write(i + " " );
}
}
}
|
OutputPreOrder Traversal of constructed BST
4 2 1 3 6 5 7
Time Complexity: O(N * logN)
Auxiliary Space: O(N) to create the tree