Create 2D Pixel Plot in Python
Pixel plots are the representation of a 2-dimension data set. In these plots, each pixel refers to a different value in a data set. In this article, we will discuss how to generate 2D pixel plots from data. A pixel plot of raw data can be generated by using the cmap and interpolation parameters of the imshow() method in matplot.pyplot module.
Syntax:
matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=, filternorm=1, filterrad=4.0, imlim=, resample=None, url=None, \*, data=None, \*\*kwargs)
Approach:
The basic steps to create 2D pixel plots in python using Matplotlib are as follows:
Step 1: Importing Required Libraries
We are importing NumPy library for creating a dataset and a ‘pyplot’ module from a matplotlib library for plotting pixel plots
import numpy as np import matplotlib.pyplot as plt
Step 2: Preparing data
For plotting, we need 2-dimensional data. Let’s create a 2d array using the random method in NumPy. Here data1 array is of three sub arrays with no of elements equal to 7, while data2 is an array of four sub-arrays with each array consisting of five elements having random value ranges between zero and one. The random method takes a maximum of five arguments.
data1 = np.random.random((3,7)) data2 = np.random.random((4,5))
We can also import a CSV file, text file, or image.
- Step 2.1: For importing a text file:
data_file = np.loadtxt("myfile.txt")
- Step 2.2: For importing CSV files:
data_file = np.genfromtxt("my_file.csv", delimiter=',')
- Step 2.3: For importing images:
img = np.load('my_img.png')
Step 3: Creating a plot
All plotting is done with respect to an axis. In most cases, a subplot which is an axes on a grid system will fit your needs. Hence, we are adding axes to the plot. Given data will be divided into nrows and ncols provided by the user.
pixel_plot = plt.figure() pixel_plot.add_axes() axes = plt.subplots(nrows,ncols)
Step 4: Plotting a plot
For plotting a plot
plt.plot(pixel_plot)
Step 5: Customize a plot:
We can customize a plot by giving a title for plot, x-axes, y-axes, numbers, and in various ways. For the pixel plot, we can add a color bar that determines the value of each pixel. The imshow() method’s attribute named interpolation with attribute value none or nearest helps to plot a plot in pixels. Here cmap attribute for the coloring of the map.
plt.title("pixel_plot") pixel_plot = plt.imshow(pixel_plot,cmap='',interpolation='') plt.colorbar(pixel_plot)
Step 6: Save plot
For saving a transparent image we need to set a transparent attribute to value true by default it is false
plt.savefig('pixel_plot.png') plt.savefig('pixel_plot.png',transparent=True)
Step 7: Show plot:
And finally, for showing a plot a simple function is used
plt.show(pixel_plot)
Below are some examples that depict how to generate 2D pixel plots using matplotlib.
Example 1: In this program, we generate a 2D pixel plot from a matrix created using random() method.
Python3
# importing modules import numpy as np import matplotlib.pyplot as plt # creating a dataset # data is an array with four sub # arrays with 10 elements in each data = np.random.random(( 4 , 10 )) # creating a plot pixel_plot = plt.figure() # plotting a plot pixel_plot.add_axes() # customizing plot plt.title( "pixel_plot" ) pixel_plot = plt.imshow( data, cmap = 'twilight' , interpolation = 'nearest' ) plt.colorbar(pixel_plot) # save a plot plt.savefig( 'pixel_plot.png' ) # show plot plt.show(pixel_plot) |
Output:
Example 2: In this example, we are taking input of a randomly generated 3D array and generate a 2D pixel plot out of it.
Python3
# importing modules import numpy as np import matplotlib.pyplot as plt # creating a dataset data = np.random.random(( 10 , 12 , 10 )) # data is an 3d array with # 10x12x10=1200 elements. # reshape this 3d array in 2d # array for plotting nrows, ncols = 40 , 30 data = data.reshape(nrows, ncols) # creating a plot pixel_plot = plt.figure() # plotting a plot pixel_plot.add_axes() # customizing plot plt.title( "pixel_plot" ) pixel_plot = plt.imshow( data, cmap = 'Greens' , interpolation = 'nearest' , origin = 'lower' ) plt.colorbar(pixel_plot) # save a plot plt.savefig( 'pixel_plot.png' ) # show plot plt.show(pixel_plot) |
Output:
Example 3: In this example, we manually create a 3D array and generate its pixel plot.
Python3
# importing modules import numpy as np import matplotlib.pyplot as plt # creating a dataset data = np.random.random(( 10 , 12 , 10 )) # data is an 3d array # with 10x12x10=1200 elements. # reshape this 3d array in 2d # array for plotting nrows, ncols = 40 , 30 data = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]] # creating a plot pixel_plot = plt.figure() # plotting a plot pixel_plot.add_axes() # customizing plot plt.title( "pixel_plot" ) pixel_plot = plt.imshow( data, cmap = 'Greens' , interpolation = 'nearest' , origin = 'lower' ) plt.colorbar(pixel_plot) # save a plot plt.savefig( 'pixel_plot.png' ) # show plot plt.show(pixel_plot) |
Output:
Please Login to comment...