Skip to content
Related Articles

Related Articles

C++ Program to Sort the Elements of an Array in Ascending Order

View Discussion
Improve Article
Save Article
  • Last Updated : 10 Jul, 2022
View Discussion
Improve Article
Save Article

Here, we will see how to sort the elements of an array in ascending order using a C++ program. Below are the examples:

Input: 3 4 5 8 1 10
Output: 1 3 4 5 8 10

Input: 11 34 6 20 40 3
Output: 3 6 11 20 34 40

There are 2 ways to sort an array in ascending order in C++:

  1. Brute-force Approach Using Bubble Sort.
  2. Optimized Approach Using Quicksort.

Let’s start discussing these solutions.

1. Brute-force Approach Using Bubble Sort

Here, the brute force approach is used using the bubble sort method. Below is the C++ program to sort the array in ascending order using the brute-force method using bubble sort:

C++




// C++ program to sort array
// in ascending order using
// Brute-force approach
// using bubble sort
#include <bits/stdc++.h>
using namespace std;
 
void sort(int num[], int len);
void swapNums(int nums[],
              int first, int second);
 
// Driver code
int main()
{
    // Initializing arrya
    int nums[] = {1, 12, 6, 8, 10};
    int size_nums = (sizeof(nums) /
                     sizeof(nums[0]));
 
    cout << "Before sorting the array is: \n";
    for (int i = 0; i < size_nums; i++)
        cout << nums[i] << " ";
    cout << "\n\n";
 
    sort(nums, size_nums);
 
    cout << "After sorting the array is: \n";
 
    for (int i = 0; i < size_nums; i++)
        cout << nums[i] << " ";
    cout << "\n";
    return 0;
}
 
// Sort function
void sort(int num[], int len)
{
    bool isSwapped;
   
    /**
     * Here we are running n-1 steps,
       for each step, max item will
       come at the last respective
       index and swap element if the
       element is smaller than the
       previous one.
     **/
    for (int i = 0; i < len; i++)
    {
        isSwapped = false;
        for (int j = 1; j < len - i; j++)
        {
            if (num[j] < num[j - 1])
            {
                swapNums(num, j, (j - 1));
                isSwapped = true;
            }
        }
        if (!isSwapped)
        {
            break;
        }
    }
}
 
// Swaps two numbers in array
void swapNums(int nums[],
              int first, int second)
{
    int curr = nums[first];
    nums[first] = nums[second];
    nums[second] = curr;
}

Output

Before sorting the array is: 
1 12 6 8 10 

After sorting the array is: 
1 6 8 10 12 
  • Time Complexity: O(n2)
  • Space Complexity: O(1)

2. Optimized Approach Using QuickSort

Here, an optimized solution is presented using the quicksort sorting algorithm. Below is the C++ program to sort an array in ascending order using an optimized approach using quicksort:

C++




// C++ program to sort an array in
// ascending order using optimized
// approach using quick sort
#include <bits/stdc++.h>
using namespace std;
 
void quickSort(int nums[],
               int low, int high);
 
// Driver code
int main()
{
    int nums[] = {1, 6, 3, 10, 50};
    int size_nums = (sizeof(nums) /
                     sizeof(nums[0]));
    
    cout << "Before sorting array is: \n";
    for (int i = 0; i < size_nums; i++)
        cout << nums[i] << " ";
    cout << "\n\n";
 
    quickSort(nums, 0, size_nums - 1);
 
    cout << "After sorting array is: \n";
 
    for (int i = 0; i < size_nums; i++)
        cout << nums[i] << " ";
    cout << "\n";
    return 0;
}
 
/**
 * Sorts the specified array into ascending
   numerical order.
 *
 * @param nums  the array to be sorted.
 * @param low   for explaining the part of 
                array working on.
 * @param high  for explaining the part of
                array working on.
 */
void quickSort(int nums[],
               int low, int high)
{
    // Base Condition
    if (low >= high)
        return;
 
    // These are just for swapping
    // the elements.
    int start = low, end = high;
    int mid = start + ((end - start) / 2);
    int pivot = nums[mid];
 
    while (start <= end) {
        while (nums[start] < nums[end])
            start++;
        while (nums[end] > pivot)
            end--;
        if (start <= end)
        {
            // Swapping the start and end
            // elements.
            int x = nums[start];
            nums[start] = nums[end];
            nums[end] = x;
            start++;
            end--;
        }
    }
    quickSort(nums, low, end);
    quickSort(nums, start, high);
}

Output

Before sorting array is: 
1 6 3 10 50 

After sorting array is: 
1 3 6 10 50 

Time Complexity: 

  • Best Case –  O(n log n)  
  • Worst Case-  O(n2)

 Space Complexity: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!