A permutation also called an “arrangement number” or “order,” is a rearrangement of the elements of an ordered list S into a one-to-one correspondence with S itself. A string of length n has n! permutation.
Source: Mathword(http://mathworld.wolfram.com/Permutation.html)
Below are the permutations of string ABC.
ABC ACB BAC BCA CBA CAB
Here is a solution that is used as a basis in backtracking.

C++
#include <bits/stdc++.h>
using namespace std;
void permute(string a, int l, int r)
{
if (l == r)
cout<<a<<endl;
else
{
for ( int i = l; i <= r; i++)
{
swap(a[l], a[i]);
permute(a, l+1, r);
swap(a[l], a[i]);
}
}
}
int main()
{
string str = "ABC" ;
int n = str.size();
permute(str, 0, n-1);
return 0;
}
|
Output:
ABC
ACB
BAC
BCA
CBA
CAB
Algorithm Paradigm: Backtracking
Time Complexity: O(n*n!) Note that there are n! permutations and it requires O(n) time to print a permutation.
Auxiliary Space: O(r – l)
Note: The above solution prints duplicate permutations if there are repeating characters in the input string. Please see the below link for a solution that prints only distinct permutations even if there are duplicates in input.
Print all distinct permutations of a given string with duplicates.
Permutations of a given string using STL
Another approach:
C++
#include <bits/stdc++.h>
#include <string>
using namespace std;
void permute(string s,
string answer)
{
if (s.length() == 0)
{
cout << answer << " " ;
return ;
}
for ( int i = 0;
i < s.length(); i++)
{
char ch = s[i];
string left_substr = s.substr(0, i);
string right_substr = s.substr(i + 1);
string rest = left_substr + right_substr;
permute(rest , answer+ch);
}
}
int main()
{
string s;
string answer = "" ;
cout << "Enter the string : " ;
cin >> s;
cout <<
"All possible strings are : " ;
permute(s, answer);
return 0;
}
|
Output:
Enter the string : abc
All possible strings are : abc acb bac bca cab cba
Time Complexity: O(n*n!) The time complexity is the same as the above approach, i.e. there are n! permutations and it requires O(n) time to print a permutation.
Auxiliary Space: O(|s|)
Please refer complete article on Write a program to print all permutations of a given string for more details!