Given an array arr consisting of N elements and Q queries of the following two types:
- 1 K: For this type of query, the array needs to be rotated by K indices anticlockwise from its current state.
- 2 L R: For this query, the sum of the array elements present in the indices [L, R] needs to be calculated.
Example:
Input: arr = { 1, 2, 3, 4, 5, 6 }, query = { {2, 1, 3}, {1, 3}, {2, 0, 3}, {1, 4}, {2, 3, 5} }
Output:
9
16
12
Explanation:
For the 1st query {2, 1, 3} -> Sum of the elements in the indices [1, 3] = 2 + 3 + 4 = 9.
For the 2nd query {1, 3} -> Modified array after anti-clockwise rotation by 3 places is { 4, 5, 6, 1, 2, 3 }
For the 3rd query {2, 0, 3} -> Sum of the elements in the indices [0, 3] = 4 + 5 + 6 + 1 = 16.
For the 4th query {1, 4} -> Modified array after anti-clockwise rotation by 4 places is { 2, 3, 4, 5, 6, 1 }
For the 5th query {2, 3, 5} -> Sum of the elements in the indices [3, 5] = 5 + 6 + 1 = 12.
Approach:
- Create a prefix array which is double the size of the arr and copy the element at the ith index of arr to ith and N + ith index of prefix for all i in [0, N).
- Precompute the prefix sum for every index of that array and store in prefix.
- Set the pointer start at 0 to denote the starting index of the initial array.
- For query of type 1, shift start to
((start + K) % N)th position
- For query of type 2, calculate
prefix[start + R]
- prefix[start + L- 1 ]
- if start + L >= 1 ,then print the value of
prefix[start + R]
Below code is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void rotatedSumQuery(
int arr[], int n,
vector<vector< int > >& query,
int Q)
{
int prefix[2 * n];
for ( int i = 0; i < n; i++) {
prefix[i] = arr[i];
prefix[i + n] = arr[i];
}
for ( int i = 1; i < 2 * n; i++)
prefix[i] += prefix[i - 1];
int start = 0;
for ( int q = 0; q < Q; q++) {
if (query[q][0] == 1) {
int k = query[q][1];
start = (start + k) % n;
}
else if (query[q][0] == 2) {
int L, R;
L = query[q][1];
R = query[q][2];
if (start + L == 0)
cout << prefix[start + R] << endl;
else
cout << prefix[start + R]
- prefix[start + L - 1]
<< endl;
}
}
}
int main()
{
int arr[] = { 1, 2, 3, 4, 5, 6 };
int Q = 5;
vector<vector< int > > query
= { { 2, 1, 3 },
{ 1, 3 },
{ 2, 0, 3 },
{ 1, 4 },
{ 2, 3, 5 } };
int n = sizeof (arr) / sizeof (arr[0]);
rotatedSumQuery(arr, n, query, Q);
return 0;
}
|
Time Complexity: O(N + Q), where Q is the number of queries, and as each query will cost O (1) time for Q queries time complexity would be O(Q).
Auxiliary Space: O(N), as we are using extra space for prefix.
Please refer complete article on Range sum queries for anticlockwise rotations of Array by K indices for more details!