C++ Program to Find a triplet such that sum of two equals to third element
Given an array of integers, you have to find three numbers such that the sum of two elements equals the third element.
Examples:
Input: {5, 32, 1, 7, 10, 50, 19, 21, 2} Output: 21, 2, 19 Input: {5, 32, 1, 7, 10, 50, 19, 21, 0} Output: no such triplet exist
Question source: Arcesium Interview Experience | Set 7 (On campus for Internship)
Simple approach: Run three loops and check if there exists a triplet such that sum of two elements equals the third element.
Time complexity: O(n^3)
Efficient approach: The idea is similar to Find a triplet that sum to a given value.
- Sort the given array first.
- Start fixing the greatest element of three from the back and traverse the array to find the other two numbers which sum up to the third element.
- Take two pointers j(from front) and k(initially i-1) to find the smallest of the two number and from i-1 to find the largest of the two remaining numbers
- If the addition of both the numbers is still less than A[i], then we need to increase the value of the summation of two numbers, thereby increasing the j pointer, so as to increase the value of A[j] + A[k].
- If the addition of both the numbers is more than A[i], then we need to decrease the value of the summation of two numbers, thereby decrease the k pointer so as to decrease the overall value of A[j] + A[k].
Below image is a dry run of the above approach:
Below is the implementation of the above approach:
C++
// C++ program to find three numbers // such that sum of two makes the // third element in array #include <bits/stdc++.h> using namespace std; // Utility function for finding // triplet in array void findTriplet( int arr[], int n) { // Sort the array sort(arr, arr + n); // For every element in arr check // if a pair exist(in array) whose // sum is equal to arr element for ( int i = n - 1; i >= 0; i--) { int j = 0; int k = i - 1; // Iterate forward and backward to // find the other two elements while (j < k) { // If the two elements sum is // equal to the third element if (arr[i] == arr[j] + arr[k]) { // Pair found cout << "numbers are " << arr[i] << " " << arr[j] << " " << arr[k] << endl; return ; } // If the element is greater than // sum of both the elements, then try // adding a smaller number to reach the // equality else if (arr[i] > arr[j] + arr[k]) j += 1; // If the element is smaller, then // try with a smaller number // to reach equality, so decrease K else k -= 1; } } // No such triplet is found in array cout << "No such triplet exists" ; } // Driver code int main() { int arr[] = {5, 32, 1, 7, 10, 50, 19, 21, 2}; int n = sizeof (arr) / sizeof (arr[0]); findTriplet(arr, n); return 0; } |
Java
import java.util.Arrays; public class Triplet { // Utility function for finding triplet in array public static void findTriplet( int [] arr, int n) { // Sort the array Arrays.sort(arr); // For every element in arr check // if a pair exists (in array) whose // sum is equal to the third element for ( int i = n - 1 ; i >= 0 ; i--) { int j = 0 ; int k = i - 1 ; // Iterate forward and backward to // find the other two elements while (j < k) { // If the two elements sum is // equal to the third element if (arr[i] == arr[j] + arr[k]) { // Pair found System.out.println( "numbers are " + arr[i] + " " + arr[j] + " " + arr[k]); return ; } // If the element is greater than // sum of both the elements, then try // adding a smaller number to reach the // equality else if (arr[i] > arr[j] + arr[k]) { j += 1 ; } // If the element is smaller, then // try with a smaller number // to reach equality, so decrease k else { k -= 1 ; } } } // No such triplet is found in array System.out.println( "No such triplet exists" ); } public static void main(String[] args) { int [] arr = { 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 }; int n = arr.length; findTriplet(arr, n); } } |
Output:
numbers are 21 2 19
Time complexity: O(N^2)
Auxiliary Space: O(1)
Another Approach: The idea is similar to previous approach.
- Sort the given array.
- Start a nested loop, fixing the first element i(from 0 to n-1) and moving the other one j (from i+1 to n-1).
- Take the sum of both the elements and search it in the remaining array using Binary Search.
C++
// C++ program to find three numbers // such that sum of two makes the // third element in array #include <bits/stdc++.h> #include <iostream> using namespace std; // Function to perform binary search bool search( int sum, int start, int end, int arr[]) { while (start <= end) { int mid = (start + end) / 2; if (arr[mid] == sum) { return true ; } else if (arr[mid] > sum) { end = mid - 1; } else { start = mid + 1; } } return false ; } // Function to find the triplets void findTriplet( int arr[], int n) { // Sorting the array sort(arr, arr + n); // Initialising nested loops for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { // Finding the sum of the numbers if (search((arr[i] + arr[j]), j, n - 1, arr)) { // Printing out the first triplet cout << "Numbers are: " << arr[i] << " " << arr[j] << " " << (arr[i] + arr[j]); return ; } } } // If no such triplets are found cout << "No such numbers exist" << endl; } // Driver code int main() { int arr[] = {5, 32, 1, 7, 10, 50, 19, 21, 2}; int n = sizeof (arr) / sizeof (arr[0]); findTriplet(arr, n); return 0; } // This code is contributed by Sarthak Delori |
Java
import java.util.Arrays; // Class to find three numbers such that // the sum of two makes the third element in array public class TripletSum { // Function to perform binary search public static boolean search( int sum, int start, int end, int arr[]) { // Perform binary search while (start <= end) { int mid = (start + end) / 2 ; if (arr[mid] == sum) { // Return true if sum is found return true ; } else if (arr[mid] > sum) { end = mid - 1 ; } else { start = mid + 1 ; } } // Return false if sum is not found return false ; } // Function to find the triplets public static void findTriplet( int arr[], int n) { // Sorting the array Arrays.sort(arr); // Initializing nested loops for ( int i = 0 ; i < n; i++) { for ( int j = i + 1 ; j < n; j++) { // Finding the sum of the numbers if (search((arr[i] + arr[j]), j, n - 1 , arr)) { // Printing out the first triplet System.out.println( "Numbers are: " + arr[i] + " " + arr[j] + " " + (arr[i] + arr[j])); return ; } } } // If no such triplets are found System.out.println( "No such numbers exist" ); } // Driver code public static void main(String[] args) { int arr[] = { 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 }; int n = arr.length; findTriplet(arr, n); } } |
Time Complexity: O(N^2*log N)
Space Complexity: O(1)
Please refer complete article on Find a triplet such that sum of two equals to third element for more details!
Please Login to comment...