C++ Program for Topological Sorting

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge uv, vertex u comes before v in the ordering. Topological Sorting for a graph is not possible if the graph is not a DAG.

For example, a topological sorting of the following graph is “5 4 2 3 1 0”. There can be more than one topological sorting for a graph. For example, another topological sorting of the following graph is “4 5 2 3 1 0”. The first vertex in topological sorting is always a vertex with in-degree as 0 (a vertex with no in-coming edges).

graph



filter_none

edit
close

play_arrow

link
brightness_4
code

// A C++ program to print topological sorting of a DAG
#include <iostream>
#include <list>
#include <stack>
using namespace std;
  
// Class to represent a graph
class Graph {
    int V; // No. of vertices'
  
    // Pointer to an array containing adjacency listsList
    list<int>* adj;
  
    // A function used by topologicalSort
    void topologicalSortUtil(int v, bool visited[], stack<int>& Stack);
  
public:
    Graph(int V); // Constructor
  
    // function to add an edge to graph
    void addEdge(int v, int w);
  
    // prints a Topological Sort of the complete graph
    void topologicalSort();
};
  
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
  
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
}
  
// A recursive function used by topologicalSort
void Graph::topologicalSortUtil(int v, bool visited[],
                                stack<int>& Stack)
{
    // Mark the current node as visited.
    visited[v] = true;
  
    // Recur for all the vertices adjacent to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            topologicalSortUtil(*i, visited, Stack);
  
    // Push current vertex to stack which stores result
    Stack.push(v);
}
  
// The function to do Topological Sort. It uses recursive
// topologicalSortUtil()
void Graph::topologicalSort()
{
    stack<int> Stack;
  
    // Mark all the vertices as not visited
    bool* visited = new bool[V];
    for (int i = 0; i < V; i++)
        visited[i] = false;
  
    // Call the recursive helper function to store Topological
    // Sort starting from all vertices one by one
    for (int i = 0; i < V; i++)
        if (visited[i] == false)
            topologicalSortUtil(i, visited, Stack);
  
    // Print contents of stack
    while (Stack.empty() == false) {
        cout << Stack.top() << " ";
        Stack.pop();
    }
}
  
// Driver program to test above functions
int main()
{
    // Create a graph given in the above diagram
    Graph g(6);
    g.addEdge(5, 2);
    g.addEdge(5, 0);
    g.addEdge(4, 0);
    g.addEdge(4, 1);
    g.addEdge(2, 3);
    g.addEdge(3, 1);
  
    cout << "Following is a Topological Sort of the given graph n";
    g.topologicalSort();
  
    return 0;
}

chevron_right


Output:

Following is a Topological Sort of the given graph n5 4 2 3 1 0

Please refer complete article on Topological Sorting for more details!



My Personal Notes arrow_drop_up


Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.