Given a binary array arr[] of size N, and an integer K, the task is to calculate the number of ways to partition the array into non-overlapping subarrays, where each subarray has exactly K number 0s.
Examples:
Input: arr[] = [ 0, 0, 1, 1, 0, 1, 0], K = 2
Output: 3
Explanation: Different possible partitions are:
{{0, 0}, {1, 1, 0, 1, 0}}, {{0, 0, 1}, {1, 0, 1, 0}}, {{0, 0, 1, 1}, {0, 1, 0}}. So, the output will be 3.
Input: arr[] = {0, 0, 1, 0, 1, 0}, K = 2
Output: 2
Input: arr[] = [1, 0, 1, 1], K = 2
Output: 0
Approach: The approach to solve the problem is based on the following idea:
If jth 0 is the last 0 for a subarray and (j+1)th 0 is the first 0 of another subarray, then the possible number of ways to partition into those two subarrays is one more than the number of 1s in between jth and (j+1)th 0.
From the above observation, it can be said that the total possible ways to partition the subarray is the multiplication of the count of 1s between K*x th and (K*x + 1)th 0, for all possible x such that K*x does not exceed the total count of 0s in the array.
Follow the illustration below for a better understanding of the problem,
Illustration:
Consider array arr[] = {0, 0, 1, 1, 0, 1, 0, 1, 0, 0}, K = 2
Index of 2nd 0 and 3rd 0 are 1 and 4
=> Total number of 1s in between = 2.
=> Possible partition with these 0s = 2 + 1 = 3.
=> Total possible partitions till now = 3
Index of 4th 0 and 5th 0 are 6 and 8
=> Total number of 1s in between = 1.
=> Possible partition with these 0s = 1 + 1 = 2.
=> Total possible partitions till now = 3*2 = 6
The possible partitions are 6:
{{0, 0}, {1, 1, 0, 1, 0}, {1, 0, 0}}, {{0, 0}, {1, 1, 0, 1, 0, 1}, {0, 0}},
{{0, 0, 1}, {1, 0, 1, 0}, {1, 0, 0}}, {{0, 0, 1}, {1, 0, 1, 0, 1}, {0, 0}},
{{0, 0, 1, 1}, {0, 1, 0}, {1, 0, 0}}, {{0, 0, 1, 1}, {0, 1, 0, 1}, {0, 0}}
Follow the steps mentioned below to solve the problem:
- Initialize a counter variable to 1(claiming there exists at least one such possible way).
- If there are less than K 0s or number of 0s is not divisible by K, then such partition is not possible.
- Then, for every possible (K*x)th and (K*x + 1)th number of 0, calculate the number of possible partitions using the above observation and multiply that with the counter variable to get the total possible partitions.
- Return the value of the counter variable.
Here is the code for the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int number_of_ways(vector< int >& arr, int K)
{
int no_0 = 0;
vector< int > zeros;
for ( int i = 0; i < arr.size(); i++) {
if (arr[i] == 0) {
no_0++;
zeros.push_back(i);
}
}
if (no_0 % K || no_0 == 0)
return 0;
int res = 1;
for ( int i = K; i < zeros.size();) {
res *= (zeros[i] - zeros[i - 1]);
i += K;
}
return res;
}
int main()
{
vector< int > arr = { 0, 0, 1, 1, 0, 1, 0 };
int K = 2;
cout << number_of_ways(arr, K) << endl;
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG {
public static int number_of_ways( int arr[], int K)
{
int no_0 = 0 ;
ArrayList<Integer> zeros = new ArrayList<Integer>();
for ( int i = 0 ; i < arr.length; i++) {
if (arr[i] == 0 ) {
no_0++;
zeros.add(i);
}
}
if ((no_0 % K != 0 ) || no_0 == 0 )
return 0 ;
int res = 1 ;
for ( int i = K; i < zeros.size();) {
res *= (zeros.get(i) - zeros.get(i - 1 ));
i += K;
}
return res;
}
public static void main(String[] args)
{
int arr[] = { 0 , 0 , 1 , 1 , 0 , 1 , 0 };
int K = 2 ;
System.out.println(number_of_ways(arr, K));
}
}
|
Python3
def number_of_ways(arr, K):
no_0 = 0
zeros = []
for i in range ( len (arr)):
if arr[i] = = 0 :
no_0 + = 1
zeros.append(i)
if no_0 % K or no_0 = = 0 :
return 0
res = 1
i = K
while (i < len (zeros)):
res * = (zeros[i] - zeros[i - 1 ])
i + = K
return res
arr = [ 0 , 0 , 1 , 1 , 0 , 1 , 0 ]
K = 2
print (number_of_ways(arr, K))
|
C#
using System;
using System.Collections.Generic;
public class GFG
{
public static int number_of_ways( int [] arr, int K)
{
int no_0 = 0;
var zeros = new List< int >();
for ( int i = 0; i < arr.Length; i++) {
if (arr[i] == 0) {
no_0++;
zeros.Add(i);
}
}
if ((no_0 % K != 0) || no_0 == 0)
return 0;
int res = 1;
for ( int i = K; i < zeros.Count;) {
res *= (zeros[i] - zeros[i - 1]);
i += K;
}
return res;
}
public static void Main( string [] args)
{
int [] arr = { 0, 0, 1, 1, 0, 1, 0 };
int K = 2;
Console.WriteLine(number_of_ways(arr, K));
}
}
|
Javascript
<script>
const number_of_ways = (arr, K) => {
let no_0 = 0;
let zeros = [];
for (let i = 0; i < arr.length; i++) {
if (arr[i] == 0) {
no_0++;
zeros.push(i);
}
}
if (no_0 % K || no_0 == 0)
return 0;
let res = 1;
for (let i = K; i < zeros.length;) {
res *= (zeros[i] - zeros[i - 1]);
i += K;
}
return res;
}
let arr = [0, 0, 1, 1, 0, 1, 0];
let K = 2;
document.write(number_of_ways(arr, K));
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
18 Apr, 2022
Like Article
Save Article