Given two integers **X** and **Y**, the task is to find the total number of ways to generate a pair of integers **A** and **B** such that Bitwise XOR and Bitwise AND between **A** and **B** is **X **and **Y** respectively

**Examples:**

Input:X = 2, Y = 5Output:2Explanation:

The two possible pairs are (5, 7) and (7, 5).Pair 1:(5, 7)

Bitwise AND = 5 & 7 = 2

Bitwise XOR = 5 ^ 7 = 5Pair 2:(7, 5)

Bitwise AND = 7 & 5 = 2

Bitwise XOR = 7 ^ 5 = 5

Input:X = 7, Y = 5Output:0

**Naive Approach:** The simplest approach to solve the problem is to choose the maximum among **X** and **Y **and set all its bits and then check all possible pairs from **0** to that maximum number, say **M**. If for any pair of **A** and **B**, **A & B** and **A⊕B **becomes equal to **X** and **Y** respectively, then increment the **count**. Print the final value of **count** after checking for all possible pairs.**Time Complexity:** O(M^{2})**Auxiliary Space:** O(1)

**Efficient Approach:** The idea is to generate all possible combinations of bits at each position. There are 4 possibilities for the **i ^{th}** bit in

**X**and

**Y**which are as follows:

- If X
_{i}= 0 and Y_{i}= 1, then A_{i}= 1 and B_{i}= 1. - If X
_{i}= 1 and Y_{i}= 1, then no possible bit assignment exist. - If X
_{i}= 0 and Y_{i}= 0 then A_{i}= 0 and B_{i}= 0. - If X
_{i}= 1 and Y_{i}= 0 then A_{i}= 0 and B_{i}= 1 or A_{i}= 1 and B_{i}= 0, where**A**,_{i}**B**,_{i}**X**, and_{i}**Y**represent_{i}**i**bit in each of them.^{th}

Follow the steps below to solve the problem:

- Initialize the counter as
**1**. - For the
**i**, if^{th}bit**X**and_{i}**Y**are equal to_{i}**1**, then print**0**. - If at
**i**,^{th}bit**X**is_{i}**1**and**Y**is_{i}**0**then multiply the counter by**2**as there are 2 options. - After that, divide
**X**and**Y**each time by**2**. - Repeat the above steps for every
**i**until both of them become^{th}bit**0**and print the value of the**counter**.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <iostream>` `using` `namespace` `std;` `// Function to return the count of` `// possible pairs of A and B whose` `// Bitwise XOR is X and Y respectively` `int` `countOfPairs(` `int` `x, ` `int` `y)` `{` ` ` `// Stores the count of pairs` ` ` `int` `counter = 1;` ` ` `// Iterate till any bit are set` ` ` `while` `(x || y) {` ` ` `// Extract i-th bit` ` ` `// of X and Y` ` ` `int` `bit1 = x % 2;` ` ` `int` `bit2 = y % 2;` ` ` `// Divide X and Y by 2` ` ` `x >>= 1;` ` ` `y >>= 1;` ` ` `// If Xi = 1 and Yi = 2,` ` ` `// multiply counter by 2` ` ` `if` `(bit1 == 1 and bit2 == 0) {` ` ` `// Increase required count` ` ` `counter *= 2;` ` ` `continue` `;` ` ` `}` ` ` `// If Xi =1 and Yi = 1` ` ` `if` `(bit1 & bit2) {` ` ` `// No answer exists` ` ` `counter = 0;` ` ` `break` `;` ` ` `}` ` ` `}` ` ` `// Return the final count` ` ` `return` `counter;` `}` `// Driver Code` `int` `main()` `{` ` ` `// Given X and Y` ` ` `int` `X = 2, Y = 5;` ` ` `// Function Call` ` ` `cout << countOfPairs(X, Y);` ` ` `return` `0;` `}` |

*chevron_right*

*filter_none*

## Java

`// Java program for ` `// the above approach` `import` `java.util.*;` `class` `GFG{` `// Function to return the count of` `// possible pairs of A and B whose` `// Bitwise XOR is X and Y respectively` `static` `int` `countOfPairs(` `int` `x, ` `int` `y)` `{` ` ` `// Stores the count of pairs` ` ` `int` `counter = ` `1` `;` ` ` `// Iterate till any bit are set` ` ` `while` `(x > ` `0` `|| y > ` `0` `) ` ` ` `{` ` ` `// Extract i-th bit` ` ` `// of X and Y` ` ` `int` `bit1 = x % ` `2` `;` ` ` `int` `bit2 = y % ` `2` `;` ` ` `// Divide X and Y by 2` ` ` `x >>= ` `1` `;` ` ` `y >>= ` `1` `;` ` ` `// If Xi = 1 and Yi = 2,` ` ` `// multiply counter by 2` ` ` `if` `(bit1 == ` `1` `&& bit2 == ` `0` `) ` ` ` `{` ` ` `// Increase required count` ` ` `counter *= ` `2` `;` ` ` `continue` `;` ` ` `}` ` ` `// If Xi =1 and Yi = 1` ` ` `if` `((bit1 & bit2) > ` `0` `) ` ` ` `{` ` ` `// No answer exists` ` ` `counter = ` `0` `;` ` ` `break` `;` ` ` `}` ` ` `}` ` ` `// Return the final count` ` ` `return` `counter;` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `// Given X and Y` ` ` `int` `X = ` `2` `, Y = ` `5` `;` ` ` `// Function Call` ` ` `System.out.print(countOfPairs(X, Y));` `}` `}` `// This code is contributed by Princi Singh` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program for the above approach ` `# Function to return the count of` `# possible pairs of A and B whose` `# Bitwise XOR is X and Y respectively` `def` `countOfPairs(x, y):` ` ` `# Stores the count of pairs` ` ` `counter ` `=` `1` ` ` `# Iterate till any bit are set` ` ` `while` `(x ` `or` `y):` ` ` `# Extract i-th bit` ` ` `# of X and Y` ` ` `bit1 ` `=` `x ` `%` `2` ` ` `bit2 ` `=` `y ` `%` `2` ` ` `# Divide X and Y by 2` ` ` `x >>` `=` `1` ` ` `y >>` `=` `1` ` ` `# If Xi = 1 and Yi = 2,` ` ` `# multiply counter by 2` ` ` `if` `(bit1 ` `=` `=` `1` `and` `bit2 ` `=` `=` `0` `):` ` ` ` ` `# Increase required count` ` ` `counter ` `*` `=` `2` ` ` `continue` ` ` `# If Xi =1 and Yi = 1` ` ` `if` `(bit1 & bit2):` ` ` `# No answer exists` ` ` `counter ` `=` `0` ` ` `break` ` ` `# Return the final count` ` ` `return` `counter` `# Driver Code` `# Given X and Y ` `X ` `=` `2` `Y ` `=` `5` `# Function call` `print` `(countOfPairs(X, Y))` `# This code is contributed by Shivam Singh` |

*chevron_right*

*filter_none*

## C#

`// C# program for ` `// the above approach` `using` `System;` `class` `GFG{` `// Function to return the count of` `// possible pairs of A and B whose` `// Bitwise XOR is X and Y respectively` `static` `int` `countOfPairs(` `int` `x, ` `int` `y)` `{` ` ` `// Stores the count of pairs` ` ` `int` `counter = 1;` ` ` `// Iterate till any bit are set` ` ` `while` `(x > 0 || y > 0) ` ` ` `{` ` ` `// Extract i-th bit` ` ` `// of X and Y` ` ` `int` `bit1 = x % 2;` ` ` `int` `bit2 = y % 2;` ` ` `// Divide X and Y by 2` ` ` `x >>= 1;` ` ` `y >>= 1;` ` ` `// If Xi = 1 and Yi = 2,` ` ` `// multiply counter by 2` ` ` `if` `(bit1 == 1 && bit2 == 0) ` ` ` `{` ` ` `// Increase required count` ` ` `counter *= 2;` ` ` `continue` `;` ` ` `}` ` ` `// If Xi =1 and Yi = 1` ` ` `if` `((bit1 & bit2) > 0) ` ` ` `{` ` ` `// No answer exists` ` ` `counter = 0;` ` ` `break` `;` ` ` `}` ` ` `}` ` ` `// Return the readonly count` ` ` `return` `counter;` `}` `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` ` ` `// Given X and Y` ` ` `int` `X = 2, Y = 5;` ` ` `// Function Call` ` ` `Console.Write(countOfPairs(X, Y));` `}` `}` ` ` `// This code is contributed by Rajput-Ji` |

*chevron_right*

*filter_none*

**Output:**

2

**Time Complexity:** O(log M)**Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Total pairs in an array such that the bitwise AND, bitwise OR and bitwise XOR of LSB is 1
- Generate an Array in which count of even and odd sum sub-arrays are E and O respectively
- Maximize array sum by replacing equal adjacent pairs by their sum and X respectively
- Count pairs with bitwise XOR exceeding bitwise AND from a given array
- Count pairs having bitwise XOR greater than K from a given array
- Count pairs having Bitwise XOR less than K from given array
- Count even length subarrays having bitwise XOR equal to 0
- Count pairs with equal Bitwise AND and Bitwise OR value
- Leftover element after performing alternate Bitwise OR and Bitwise XOR operations on adjacent pairs
- Count of pairs having bit size at most X and Bitwise OR equal to X
- Subsequence pair from given Array having all unique and all same elements respectively
- Largest possible value of M not exceeding N having equal Bitwise OR and XOR between them
- Highest and Smallest power of K less than and greater than equal to N respectively
- Count ways to split a Binary String into three substrings having equal count of zeros
- Count of rectangles possible from N and M straight lines parallel to X and Y axis respectively
- Count squares possible from M and N straight lines parallel to X and Y axis respectively
- Count of binary strings of length N having equal count of 0's and 1's and count of 1's ≥ count of 0's in each prefix substring
- Count pairs with Bitwise XOR as ODD number
- Count pairs with Bitwise XOR as EVEN number
- Generate an array having Bitwise AND of the previous and the next element

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.