Open In App

Count ways to distribute m items among n people

Last Updated : 06 May, 2021
Improve
Improve
Like Article
Like
Save
Share
Report

Given m and n representing number of mangoes and number of people respectively. Task is to calculate number of ways to distribute m mangoes among n people. Considering both variables m and n, we arrive at 4 typical use cases where mangoes and people are considered to be:
1) Both identical 
2) Unique and identical respectively 
3) Identical and unique respectively 
4) Both unique 
Prerequisites: Binomial Coefficient | Permutation and Combination
 


Case 1: Distributing m identical mangoes amongst n identical people
If we try to spread m mangoes in a row, our goal is to divide these m mangoes among n people sitting somewhere between arrangement of these mangoes. All we need to do is pool these m mangoes into n sets so that each of these n sets can be allocated to n people respectively. 
To accomplish above task, we need to partition the initial arrangement of mangoes by using n-1 partitioners to create n sets of mangoes. In this case we need to arrange m mangoes and n-1 partitioners all together. So we need (m+ n-1)!  ways to calculate our answer. 
Illustration given below represents an example(a way) of an arrangement of partitions created after placing 3 partitioners namely P1, P2, P3 which partitioned all 7 mangoes into 4 different partitions so that 4 people can have their own portion of respective partition: 
 

Example of an arrangement after partitioning


As all the mangoes are considered to be identical, we divide (m+n-1)!  by (m)!  to deduct the duplicate entries. Similarly, we divide the above expression again by (n-1)!  because all people are considered to be identical too.
The final expression we get is : (m+n-1)!/((n-1)!*(m)!)
The above expression is even-actually equal to the binomial coefficient: ^m^+^n^-^1C_n_-_1
Example: 
 

Input :  m = 3, n = 2
Output : 4
There are four ways
3 + 0, 1 + 2, 2 + 1 and 0 + 3 

Input :  m = 13, n = 6
Output : 8568

Input :  m = 11, n = 3
Output : 78


 

C++

// C++ code for calculating number of ways
// to distribute m mangoes amongst n people
// where all mangoes and people are identical
#include <bits/stdc++.h>
using namespace std;
 
// function used to generate binomial coefficient
// time complexity O(m)
int binomial_coefficient(int n, int m)
{
    int res = 1;
 
    if (m > n - m)
        m = n - m;
 
    for (int i = 0; i < m; ++i) {
        res *= (n - i);
        res /= (i + 1);
    }
 
    return res;
}
 
// helper function for generating no of ways
// to distribute m mangoes amongst n people
int calculate_ways(int m, int n)
{
    // not enough mangoes to be distributed
    if (m < n)
        return 0;
     
    // ways  -> (n+m-1)C(n-1)
    int ways = binomial_coefficient(n + m - 1, n - 1);
    return ways;
}
 
// Driver function
int main()
{
    // m represents number of mangoes
    // n represents number of people
    int m = 7, n = 5;
 
    int result = calculate_ways(m, n);
    printf("%d\n", result);
 
    return 0;
}

                    

Java

// Java code for calculating number of ways
// to distribute m mangoes amongst n people
// where all mangoes and people are identical
 
import java.util.*;
 
class GFG {
 
    // function used to generate binomial coefficient
    // time complexity O(m)
    public static int binomial_coefficient(int n, int m)
    {
        int res = 1;
 
        if (m > n - m)
            m = n - m;
 
        for (int i = 0; i < m; ++i) {
            res *= (n - i);
            res /= (i + 1);
        }
 
        return res;
    }
 
    // helper function for generating no of ways
    // to distribute m mangoes amongst n people
    public static int calculate_ways(int m, int n)
    {
 
        // not enough mangoes to be distributed
        if (m < n) {
            return 0;
        }
 
        // ways  -> (n+m-1)C(n-1)
        int ways = binomial_coefficient(n + m - 1, n - 1);
        return ways;
    }
 
    // Driver function
    public static void main(String[] args)
    {
 
        // m represents number of mangoes
        // n represents number of people
        int m = 7, n = 5;
 
        int result = calculate_ways(m, n);
        System.out.println(Integer.toString(result));
 
        System.exit(0);
    }
}

                    

Python3

# Python code for calculating number of ways
# to distribute m mangoes amongst n people
# where all mangoes and people are identical
 
 
# function used to generate binomial coefficient
# time complexity O(m)
def binomial_coefficient(n, m):
    res = 1
 
    if m > n - m:
        m = n - m
 
    for i in range(0, m):
        res *= (n - i)
        res /= (i + 1)
 
    return res
 
# helper function for generating no of ways
# to distribute m mangoes amongst n people
def calculate_ways(m, n):
 
    # not enough mangoes to be distributed   
    if m<n:
        return 0
 
    # ways  -> (n + m-1)C(n-1)
    ways = binomial_coefficient(n + m-1, n-1)
    return int(ways)
 
# Driver function
if __name__ == '__main__':
 
    # m represents number of mangoes
    # n represents number of people
    m = 7 ;n = 5
 
    result = calculate_ways(m, n)
    print(result)

                    

C#

// C# code for calculating number
// of ways to distribute m mangoes
// amongst n people where all mangoes
// and people are identical
using System;
 
class GFG
{
 
// function used to generate
// binomial coefficient
// time complexity O(m)
public static int binomial_coefficient(int n,
                                       int m)
{
    int res = 1;
 
    if (m > n - m)
        m = n - m;
 
    for (int i = 0; i < m; ++i)
    {
        res *= (n - i);
        res /= (i + 1);
    }
 
    return res;
}
 
// helper function for generating
// no of ways to distribute m
// mangoes amongst n people
public static int calculate_ways(int m, int n)
{
 
    // not enough mangoes
    // to be distributed
    if (m < n)
    {
        return 0;
    }
 
    // ways -> (n+m-1)C(n-1)
    int ways = binomial_coefficient(n + m - 1,
                                    n - 1);
    return ways;
}
 
// Driver Code
public static void Main()
{
 
    // m represents number of mangoes
    // n represents number of people
    int m = 7, n = 5;
 
    int result = calculate_ways(m, n);
    Console.WriteLine(result.ToString());
}
}
 
// This code is contributed
// by Subhadeep

                    

PHP

<?php
// PHP code for calculating number
// of ways to distribute m mangoes
// amongst n people where all
// mangoes and people are identical
 
// function used to generate
// binomial coefficient
// time complexity O(m)
function binomial_coefficient($n, $m)
{
    $res = 1;
 
    if ($m > $n - $m)
        $m = $n - $m;
 
    for ($i = 0; $i < $m; ++$i)
    {
        $res *= ($n - $i);
        $res /= ($i + 1);
    }
 
    return $res;
}
 
// Helper function for generating
// no of ways to distribute m.
// mangoes amongst n people
function calculate_ways($m, $n)
{
    // not enough mangoes to
    // be distributed
    if ($m < $n)
        return 0;
     
    // ways -> (n+m-1)C(n-1)
    $ways = binomial_coefficient($n + $m - 1,
                                      $n - 1);
    return $ways;
}
 
// Driver Code
 
// m represents number of mangoes
// n represents number of people
$m = 7;
$n = 5;
 
$result = calculate_ways($m, $n);
echo $result;
 
// This code is contributed
// by Shivi_Aggarwal
?>

                    

Javascript

<script>
 
// Javascript code for calculating number of ways
// to distribute m mangoes amongst n people
// where all mangoes and people are identical
 
// function used to generate binomial coefficient
// time complexity O(m)
function binomial_coefficient(n, m)
{
    let res = 1;
 
    if (m > n - m)
        m = n - m;
 
    for (let i = 0; i < m; ++i) {
        res *= (n - i);
        res /= (i + 1);
    }
 
    return res;
}
 
// helper function for generating no of ways
// to distribute m mangoes amongst n people
function calculate_ways(m, n)
{
    // not enough mangoes to be distributed
    if (m < n)
        return 0;
     
    // ways -> (n+m-1)C(n-1)
    let ways = binomial_coefficient(n + m - 1, n - 1);
    return ways;
}
 
// Driver function
 
    // m represents number of mangoes
    // n represents number of people
    let m = 7, n = 5;
 
    let result = calculate_ways(m, n);
    document.write(result);
 
// This code is contributed by Mayank Tyagi
</script>

                    

Output:  

330


Time Complexity : O(n) 
Auxiliary Space : O(1)
Case 2: Distributing m unique mangoes amongst n identical people 
In this case, to calculate the number of ways to distribute m unique mangoes amongst n identical people, we just need to multiply the last expression ^m^+^n^-^1C_n_-_1  we calculated in Case 1 by m!
So our final expression for this case is ^m^+^n^-^1C_n_-_1*m!
Proof: 
In case 1, initially we got the expression (m+ n-1)!  without removing duplicate entries. 
In this case, we only need to divide (n-1)!  as all mangoes are considered to be unique in this case. 
So we get the expression as : (m+ n-1)!/(n-1)!
Multiplying both numerator and denominator by (n-1)!
we get (m+ n-1)!*m!/(n-1)!*m!
Where ((m+ n-1)!/(n-1)!*m!)*m!  === ^m^+^n^-^1C_n_-_1*m!
Time Complexity : O(max(n, m)) 
Auxiliary Space : O(1)
Case 3: Distributing m identical mangoes amongst n unique people
In this case, to calculate the number of ways to distribute m identical mangoes amongst n unique people, we just need to multiply the last expression ^m^+^n^-^1C_n_-_1  we calculated in Case 1 by (n-1)!
So our final expression for this case is ^m^+^n^-^1C_n_-_1*(n-1)!
Proof: 
This Proof is pretty much similar to the proof of last case expression. 
In case 1, initially we got the expression (m+ n-1)!  without removing duplicate entries. 
In this case, we only need to divide m!  as all people are considered to be unique in this case. 
So we get the expression as : (m+ n-1)!/m!
Multiplying both numerator and denominator by (n-1)!
we get (m+ n-1)!*(n-1)!/(n-1)!*m!
Where ((m+ n-1)!/(n-1)!*m!)*(n-1)!  === ^m^+^n^-^1C_n_-_1*(n-1)!
Time Complexity : O(n) 
Auxiliary Space : O(1)
For references on how to calculate m!  refer here factorial of a number
Case 4: Distributing m unique mangoes amongst n unique people
In this case we need to multiply the expression obtained in case 1 by both m!  and (n-1)!
The proofs for both of the multiplications are defined in case 2 and case 3.
Hence, in this case, our final expression comes out to be ^m^+^n^-^1C_n_-_1*(n-1)!*m!
Time Complexity : O(n+m) 
Auxiliary Space : O(1)
 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads