Given m and n representing number of mangoes and number of people respectively. Task is to calculate number of ways to distribute m mangoes among n people. Considering both variables m and n, we arrive at 4 typical use cases where mangoes and people are considered to be:

1) Both identical

2) Unique and identical respectively

3) Identical and unique respectively

4) Both unique **Prerequisites:** Binomial Coefficient | Permutation and Combination

**Case 1: Distributing m identical mangoes amongst n identical people**

If we try to spread m mangoes in a row, our goal is to divide these m mangoes among n people sitting somewhere between arrangement of these mangoes. All we need to do is pool these m mangoes into n sets so that each of these n sets can be allocated to n people respectively.

To accomplish above task, we need to partition the initial arrangement of mangoes by using n-1 partitioners to create n sets of mangoes. In this case we need to arrange m mangoes and n-1 partitioners all together. So we need ways to calculate our answer.

Illustration given below represents an example(a way) of an arrangement of partitions created after placing 3 partitioners namely P1, P2, P3 which partitioned all 7 mangoes into 4 different partitions so that 4 people can have their own portion of respective partition:

As all the mangoes are considered to be identical, we divide by to deduct the duplicate entries. Similarly, we divide the above expression again by because all people are considered to be identical too.

The final expression we get is :

The above expression is even-actually equal to the binomial coefficient:

Example:

Input : m = 3, n = 2 Output : 4 There are four ways 3 + 0, 1 + 2, 2 + 1 and 0 + 3 Input : m = 13, n = 6 Output : 8568 Input : m = 11, n = 3 Output : 78

## C++

`// C++ code for calculating number of ways` `// to distribute m mangoes amongst n people` `// where all mangoes and people are identical` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// function used to generate binomial coefficient` `// time complexity O(m)` `int` `binomial_coefficient(` `int` `n, ` `int` `m)` `{` ` ` `int` `res = 1;` ` ` `if` `(m > n - m)` ` ` `m = n - m;` ` ` `for` `(` `int` `i = 0; i < m; ++i) {` ` ` `res *= (n - i);` ` ` `res /= (i + 1);` ` ` `}` ` ` `return` `res;` `}` `// helper function for generating no of ways` `// to distribute m mangoes amongst n people` `int` `calculate_ways(` `int` `m, ` `int` `n)` `{` ` ` `// not enough mangoes to be distributed` ` ` `if` `(m < n)` ` ` `return` `0;` ` ` ` ` `// ways -> (n+m-1)C(n-1)` ` ` `int` `ways = binomial_coefficient(n + m - 1, n - 1);` ` ` `return` `ways;` `}` `// Driver function` `int` `main()` `{` ` ` `// m represents number of mangoes` ` ` `// n represents number of people` ` ` `int` `m = 7, n = 5;` ` ` `int` `result = calculate_ways(m, n);` ` ` `printf` `(` `"%d\n"` `, result);` ` ` `return` `0;` `}` |

## Java

`// Java code for calculating number of ways` `// to distribute m mangoes amongst n people` `// where all mangoes and people are identical` `import` `java.util.*;` `class` `GFG {` ` ` `// function used to generate binomial coefficient` ` ` `// time complexity O(m)` ` ` `public` `static` `int` `binomial_coefficient(` `int` `n, ` `int` `m)` ` ` `{` ` ` `int` `res = ` `1` `;` ` ` `if` `(m > n - m)` ` ` `m = n - m;` ` ` `for` `(` `int` `i = ` `0` `; i < m; ++i) {` ` ` `res *= (n - i);` ` ` `res /= (i + ` `1` `);` ` ` `}` ` ` `return` `res;` ` ` `}` ` ` `// helper function for generating no of ways` ` ` `// to distribute m mangoes amongst n people` ` ` `public` `static` `int` `calculate_ways(` `int` `m, ` `int` `n)` ` ` `{` ` ` `// not enough mangoes to be distributed` ` ` `if` `(m < n) {` ` ` `return` `0` `;` ` ` `}` ` ` `// ways -> (n+m-1)C(n-1)` ` ` `int` `ways = binomial_coefficient(n + m - ` `1` `, n - ` `1` `);` ` ` `return` `ways;` ` ` `}` ` ` `// Driver function` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `// m represents number of mangoes` ` ` `// n represents number of people` ` ` `int` `m = ` `7` `, n = ` `5` `;` ` ` `int` `result = calculate_ways(m, n);` ` ` `System.out.println(Integer.toString(result));` ` ` `System.exit(` `0` `);` ` ` `}` `}` |

## Python3

`# Python code for calculating number of ways` `# to distribute m mangoes amongst n people` `# where all mangoes and people are identical` `# function used to generate binomial coefficient` `# time complexity O(m)` `def` `binomial_coefficient(n, m):` ` ` `res ` `=` `1` ` ` `if` `m > n ` `-` `m:` ` ` `m ` `=` `n ` `-` `m` ` ` `for` `i ` `in` `range` `(` `0` `, m):` ` ` `res ` `*` `=` `(n ` `-` `i)` ` ` `res ` `/` `=` `(i ` `+` `1` `)` ` ` `return` `res` `# helper function for generating no of ways` `# to distribute m mangoes amongst n people` `def` `calculate_ways(m, n):` ` ` `# not enough mangoes to be distributed ` ` ` `if` `m<n:` ` ` `return` `0` ` ` `# ways -> (n + m-1)C(n-1)` ` ` `ways ` `=` `binomial_coefficient(n ` `+` `m` `-` `1` `, n` `-` `1` `)` ` ` `return` `int` `(ways)` `# Driver function` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `# m represents number of mangoes` ` ` `# n represents number of people` ` ` `m ` `=` `7` `;n ` `=` `5` ` ` `result ` `=` `calculate_ways(m, n)` ` ` `print` `(result)` |

## C#

`// C# code for calculating number` `// of ways to distribute m mangoes` `// amongst n people where all mangoes` `// and people are identical` `using` `System;` `class` `GFG` `{` `// function used to generate` `// binomial coefficient` `// time complexity O(m)` `public` `static` `int` `binomial_coefficient(` `int` `n,` ` ` `int` `m)` `{` ` ` `int` `res = 1;` ` ` `if` `(m > n - m)` ` ` `m = n - m;` ` ` `for` `(` `int` `i = 0; i < m; ++i)` ` ` `{` ` ` `res *= (n - i);` ` ` `res /= (i + 1);` ` ` `}` ` ` `return` `res;` `}` `// helper function for generating` `// no of ways to distribute m` `// mangoes amongst n people` `public` `static` `int` `calculate_ways(` `int` `m, ` `int` `n)` `{` ` ` `// not enough mangoes` ` ` `// to be distributed` ` ` `if` `(m < n)` ` ` `{` ` ` `return` `0;` ` ` `}` ` ` `// ways -> (n+m-1)C(n-1)` ` ` `int` `ways = binomial_coefficient(n + m - 1,` ` ` `n - 1);` ` ` `return` `ways;` `}` `// Driver Code` `public` `static` `void` `Main()` `{` ` ` `// m represents number of mangoes` ` ` `// n represents number of people` ` ` `int` `m = 7, n = 5;` ` ` `int` `result = calculate_ways(m, n);` ` ` `Console.WriteLine(result.ToString());` `}` `}` `// This code is contributed` `// by Subhadeep` |

## PHP

`<?php` `// PHP code for calculating number` `// of ways to distribute m mangoes` `// amongst n people where all` `// mangoes and people are identical` `// function used to generate` `// binomial coefficient` `// time complexity O(m)` `function` `binomial_coefficient(` `$n` `, ` `$m` `)` `{` ` ` `$res` `= 1;` ` ` `if` `(` `$m` `> ` `$n` `- ` `$m` `)` ` ` `$m` `= ` `$n` `- ` `$m` `;` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$m` `; ++` `$i` `)` ` ` `{` ` ` `$res` `*= (` `$n` `- ` `$i` `);` ` ` `$res` `/= (` `$i` `+ 1);` ` ` `}` ` ` `return` `$res` `;` `}` `// Helper function for generating` `// no of ways to distribute m.` `// mangoes amongst n people` `function` `calculate_ways(` `$m` `, ` `$n` `)` `{` ` ` `// not enough mangoes to` ` ` `// be distributed` ` ` `if` `(` `$m` `< ` `$n` `)` ` ` `return` `0;` ` ` ` ` `// ways -> (n+m-1)C(n-1)` ` ` `$ways` `= binomial_coefficient(` `$n` `+ ` `$m` `- 1,` ` ` `$n` `- 1);` ` ` `return` `$ways` `;` `}` `// Driver Code` `// m represents number of mangoes` `// n represents number of people` `$m` `= 7;` `$n` `= 5;` `$result` `= calculate_ways(` `$m` `, ` `$n` `);` `echo` `$result` `;` `// This code is contributed` `// by Shivi_Aggarwal` `?>` |

## Javascript

`<script>` `// Javascript code for calculating number of ways` `// to distribute m mangoes amongst n people` `// where all mangoes and people are identical` `// function used to generate binomial coefficient` `// time complexity O(m)` `function` `binomial_coefficient(n, m)` `{` ` ` `let res = 1;` ` ` `if` `(m > n - m)` ` ` `m = n - m;` ` ` `for` `(let i = 0; i < m; ++i) {` ` ` `res *= (n - i);` ` ` `res /= (i + 1);` ` ` `}` ` ` `return` `res;` `}` `// helper function for generating no of ways` `// to distribute m mangoes amongst n people` `function` `calculate_ways(m, n)` `{` ` ` `// not enough mangoes to be distributed` ` ` `if` `(m < n)` ` ` `return` `0;` ` ` ` ` `// ways -> (n+m-1)C(n-1)` ` ` `let ways = binomial_coefficient(n + m - 1, n - 1);` ` ` `return` `ways;` `}` `// Driver function` ` ` `// m represents number of mangoes` ` ` `// n represents number of people` ` ` `let m = 7, n = 5;` ` ` `let result = calculate_ways(m, n);` ` ` `document.write(result);` `// This code is contributed by Mayank Tyagi` `</script>` |

**Output:**

330

**Time Complexity :** O(n) **Auxiliary Space :** O(1)**Case 2: Distributing m unique mangoes amongst n identical people**

In this case, to calculate the number of ways to distribute m unique mangoes amongst n identical people, we just need to multiply the last expression we calculated in Case 1 by .

So our final expression for this case is **Proof:**

In case 1, initially we got the expression without removing duplicate entries.

In this case, we only need to divide as all mangoes are considered to be unique in this case.

So we get the expression as :

Multiplying both numerator and denominator by ,

we get

Where === **Time Complexity :** O(max(n, m)) **Auxiliary Space :** O(1)**Case 3: Distributing m identical mangoes amongst n unique people**

In this case, to calculate the number of ways to distribute m identical mangoes amongst n unique people, we just need to multiply the last expression we calculated in Case 1 by .

So our final expression for this case is **Proof:**

This Proof is pretty much similar to the proof of last case expression.

In case 1, initially we got the expression without removing duplicate entries.

In this case, we only need to divide as all people are considered to be unique in this case.

So we get the expression as :

Multiplying both numerator and denominator by ,

we get

Where === **Time Complexity :** O(n) **Auxiliary Space :** O(1)

For references on how to calculate refer here factorial of a number**Case 4: Distributing m unique mangoes amongst n unique people**

In this case we need to multiply the expression obtained in case 1 by both and .

The proofs for both of the multiplications are defined in case 2 and case 3.

Hence, in this case, our final expression comes out to be **Time Complexity :** O(n+m) **Auxiliary Space :** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend live classes with industry experts, please refer **DSA Live Classes**