Skip to content
Related Articles

Related Articles

Count Values in Pandas Dataframe

View Discussion
Improve Article
Save Article
  • Last Updated : 09 Aug, 2021
View Discussion
Improve Article
Save Article

In this article, we are going to count values in Pandas dataframe. First, we will create a data frame, and then we will count the values of different attributes.

Syntax: DataFrame.count(axis=0, level=None, numeric_only=False)

Parameters:

  • axis {0 or ‘index’, 1 or ‘columns’}: default 0 Counts are generated for each column if axis=0 or axis=’index’ and counts are generated for each row if axis=1 or axis=”columns”.
  • level (nt or str, optional): If the axis is a MultiIndex, count along a particular level, collapsing into a DataFrame. A str specifies the level name.
  • numeric_only (boolean, default False): It includes only int, float or boolean value.

Returns: It returns count of non-null values and if level is used it returns dataframe

Step-by-step approach:

Step 1: Importing libraries.

Python3




# importing libraries
import numpy as np
import pandas as pd

Step 2: Creating Dataframe

Python3




# Creating dataframe with
# some missing values
NaN = np.nan
dataframe = pd.DataFrame({'Name': ['Shobhit', 'Vaibhav',
                                   'Vimal', 'Sourabh',
                                   'Rahul', 'Shobhit'],
                          'Physics': [11, 12, 13, 14, NaN, 11],
                          'Chemistry': [10, 14, NaN, 18, 20, 10],
                          'Math': [13, 10, 15, NaN, NaN, 13]})
 
display(dataframe)

Output:

Created Dataframe

Step 3: In this step, we just simply use the .count() function to count all the values of different columns.

Python3




# using dataframe.count()
# to count all values
dataframe.count()

Output:

We can see that there is a difference in count value as we have missing values. There are 5 values in the Name column,4 in Physics and Chemistry, and 3 in Math. In this case, it uses it’s an argument with its default values.

Step 4: If we want to count all the values with respect to row then we have to pass axis=1 or ‘columns’.

Python3




# we can pass either axis=1 or
# axos='columns' to count with respect to row
print(dataframe.count(axis = 1))
 
print(dataframe.count(axis = 'columns'))

Output:

count with respect to row

Step 5: Now if we want to count null values in our dataframe.

Python3




# it will give the count
# of individual columns count of null values
print(dataframe.isnull().sum())
 
# it will give the total null
# values present in our dataframe
print("Total Null values count: ",
      dataframe.isnull().sum().sum())

Output:

Step 6:. Some examples to use .count()

Now we want to count no of students whose physics marks are greater than 11.

Python3




# count of student with greater
# than 11 marks in physics
print("Count of students with physics marks greater than 11 is->",
      dataframe[dataframe['Physics'] > 11]['Name'].count())
 
# resultant of above dataframe
dataframe[dataframe['Physics']>11]

Output:

Physics>11

Count of students whose physics marks are greater than 10,chemistry marks are greater than 11 and math marks are greater than 9.

Python3




# Count of students whose physics marks
# are greater than 10,chemistry marks are
# greater than 11 and math marks are greater than 9.
print("Count of students ->",
      dataframe[(dataframe['Physics'] > 10) &
                (dataframe['Chemistry'] > 11) &
                (dataframe['Math'] > 9)]['Name'].count())
 
# dataframe of above result
dataframe[(dataframe['Physics'] > 10 ) &
          (dataframe['Chemistry'] > 11 ) &
          (dataframe['Math'] > 9 )]

Output:

Physics>10 ,Chemistry>11,Maths>9

Below is the full implementation:

Python3




# importing Libraries
import pandas as pd
import numpy as np
 
# Creating dataframe using dictionary
NaN = np.nan
dataframe = pd.DataFrame({'Name': ['Shobhit', 'Vaibhav',
                                   'Vimal', 'Sourabh',
                                   'Rahul', 'Shobhit'],
                          'Physics': [11, 12, 13, 14, NaN, 11],
                          'Chemistry': [10, 14, NaN, 18, 20, 10],
                          'Math': [13, 10, 15, NaN, NaN, 13]})
 
print("Created Dataframe")
print(dataframe)
 
# finding Count of all columns
print("Count of all values wrt columns")
print(dataframe.count())
 
# Count according to rows
print("Count of all values wrt rows")
print(dataframe.count(axis=1))
print(dataframe.count(axis='columns'))
 
# count of null values
print("Null Values counts ")
print(dataframe.isnull().sum())
print("Total null values",
      dataframe.isnull().sum().sum())
 
# count of student with greater
# than 11 marks in physics
print("Count of students with physics marks greater than 11 is->",
      dataframe[dataframe['Physics'] > 11]['Name'].count())
 
# resultant of above dataframe
print(dataframe[dataframe['Physics'] > 11])
print("Count of students ->",
      dataframe[(dataframe['Physics'] > 10) &
                (dataframe['Chemistry'] > 11) &
                (dataframe['Math'] > 9)]['Name'].count())
 
print(dataframe[(dataframe['Physics'] > 10) &
                (dataframe['Chemistry'] > 11) &
                (dataframe['Math'] > 9)])

Output:


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!