Open In App
Related Articles

Count unset bits in a range

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a non-negative number n and two values l and r. The problem is to count the number of unset bits in the range l to r in the binary representation of n, i.e, to count unset bits from the rightmost lth bit to the rightmost rth bit.
Examples: 
 

Input : n = 42, l = 2, r = 5
Output : 2
(42)10 = (101010)2
There are '2' unset bits in the range 2 to 5.

Input : n = 80, l = 1, r = 4
Output : 4

 

Approach: Following are the steps:
 

  1. Calculate num = ((1 << r) – 1) ^ ((1 << (l-1)) – 1). This will produce a number num having r number of bits and bits in the range l to r are the only set bits.
  2. Count number of set bits in the number (n & num). Refer this post. Let it be count.
  3. Calculate ans = (r – l + 1) – count.
  4. Return ans.

 

C++




// C++ implementation to count unset bits in the
// given range
#include <bits/stdc++.h>
using namespace std;
 
// Function to get no of set bits in the
// binary representation of 'n'
unsigned int countSetBits(int n)
{
    unsigned int count = 0;
    while (n) {
        n &= (n - 1);
        count++;
    }
    return count;
}
 
// function to count unset bits
// in the given range
unsigned int countUnsetBitsInGivenRange(unsigned int n,
                        unsigned int l, unsigned int r)
{
    // calculating a number 'num' having 'r' number
    // of bits and bits in the range l to r are the
    // only set bits
    int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
 
    // returns number of unset bits in the range
    // 'l' to 'r' in 'n'
    return (r - l + 1) - countSetBits(n & num);
}
 
// Driver program to test above
int main()
{
    unsigned int n = 80;
    unsigned int l = 1, r = 4;
    cout << countUnsetBitsInGivenRange(n, l, r);
    return 0;
}


Java




// Java implementation to count unset bits in the
// given range
class GFG {
     
    // Function to get no of set bits in the
    // binary representation of 'n'
    static int countSetBits(int n)
    {
        int count = 0;
         
        while (n > 0) {
            n &= (n - 1);
            count++;
        }
         
        return count;
    }
 
    // function to count unset bits
    // in the given range
    static int countUnsetBitsInGivenRange(int n,
                                    int l, int r)
    {
         
        // calculating a number 'num' having 'r'
        // number of bits and bits in the range
        // l to r are the only set bits
        int num = ((1 << r) - 1) ^ ((1 <<
                                   (l - 1)) - 1);
 
        // returns number of unset bits in the range
        // 'l' to 'r' in 'n'
        return (r - l + 1) - countSetBits(n & num);
    }
     
    // Driver code
    public static void main(String[] args)
    {
        int n = 80;
        int l = 1, r = 4;
         
        System.out.print(
            countUnsetBitsInGivenRange(n, l, r));
    }
}
 
// This code is contributed by Anant Agarwal.


Python3




# Python3 implementation to count
# unset bits in the given range
 
# Function to get no of set bits in
# the binary representation of 'n'
def countSetBits (n):
    count = 0
    while n:
        n &= (n - 1)
        count += 1
    return count
 
# function to count unset bits
# in the given range
def countUnsetBitsInGivenRange (n, l, r):
     
    # calculating a number 'num' having
    # 'r' number of bits and bits in the
    # range l to r are the only set bits
    num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1)
     
    # returns number of unset bits
    # in the range 'l' to 'r' in 'n'
    return (r - l + 1) - countSetBits(n & num)
 
# Driver code to test above
n = 80
l = 1
r = 4
print(countUnsetBitsInGivenRange(n, l, r))
 
# This code is contributed by "Sharad_Bhardwaj"


C#




// C# implementation to count unset bits in the
// given range
using System;
 
class GFG {
     
    // Function to get no of set bits in the
    // binary representation of 'n'
    static int countSetBits(int n)
    {
        int count = 0;
         
        while (n > 0) {
            n &= (n - 1);
            count++;
        }
         
        return count;
    }
      
    // function to count unset bits
    // in the given range
    static int countUnsetBitsInGivenRange(int n,
                                    int l,int r)
    {
         
        // calculating a number 'num' having 'r'
        // number of bits and bits in the range l
        // to r are the only set bits
        int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
      
        // returns number of unset bits in the range
        // 'l' to 'r' in 'n'
        return (r - l + 1) - countSetBits(n & num);
    }
     
    //Driver code
    public static void Main()
    {
        int n = 80;
        int l = 1, r = 4;
         
        Console.Write(countUnsetBitsInGivenRange(n, l, r));
    }
}
 
//This code is contributed by Anant Agarwal.


PHP




<?php
// php implementation to count
// unset bits in the given range
 
// Function to get no of set bits in
// the binary representation of 'n'
function countSetBits($n)
{
    $count = 0;
    while ($n)
    {
        $n &= ($n - 1);
        $count++;
    }
    return $count;
}
 
// function to count unset
// bits in the given range
function countUnsetBitsInGivenRange($n, $l, $r)
{
     
    // calculating a number 'num'
    // having 'r' number
    // of bits and bits in the
    // range l to r are the
    // only set bits
    $num = ((1 << $r) - 1) ^
            ((1 << ($l - 1)) - 1);
 
    // returns number of unset
    // bits in the range
    // 'l' to 'r' in 'n'
    return ($r - $l + 1) -
           countSetBits($n & $num);
}
 
    // Driver code
    $n = 80;
    $l = 1;
    $r = 4;
    echo countUnsetBitsInGivenRange($n, $l, $r);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript implementation to count unset bits in the
// given range
 
// Function to get no of set bits in the
// binary representation of 'n'
function countSetBits(n)
{
    var count = 0;
    while (n) {
        n &= (n - 1);
        count++;
    }
    return count;
}
 
// function to count unset bits
// in the given range
function countUnsetBitsInGivenRange(n, l, r)
{
    // calculating a number 'num' having 'r' number
    // of bits and bits in the range l to r are the
    // only set bits
    var num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
 
    // returns number of unset bits in the range
    // 'l' to 'r' in 'n'
    return (r - l + 1) - countSetBits(n & num);
}
 
// Driver program to test above
var n = 80;
var l = 1, r = 4;
document.write( countUnsetBitsInGivenRange(n, l, r));
 
</script>


Output: 

4

Time Complexity: O(log n)
Space Complexity: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 15 Jun, 2022
Like Article
Save Article
Similar Reads
Related Tutorials