Skip to content
Related Articles

Related Articles

Count unequal element pairs from the given Array
  • Last Updated : 07 Apr, 2021

Given an array arr[] of N elements. The task is to count the total number of indices (i, j) such that arr[i] != arr[j] and i < j.
Examples: 
 

Input: arr[] = {1, 1, 2} 
Output:
(1, 2) and (1, 2) are the only valid pairs.
Input: arr[] = {1, 2, 3} 
Output: 3
Input: arr[] = {1, 1, 1} 
Output:
 

 

Approach: Initialise a count variable cnt = 0 and run two nested loops to check every possible pair whether the the current pair is valid or not. If it is valid, then increment the count variable. Finally, print the count of valid pairs.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// count of valid pairs
int countPairs(int arr[], int n)
{
 
    // To store the required count
    int cnt = 0;
 
    // For each index pair (i, j)
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // If current pair is valid
            // then increment the count
            if (arr[i] != arr[j])
                cnt++;
        }
    }
    return cnt;
}
 
// Driven code
int main()
{
    int arr[] = { 1, 1, 2 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << countPairs(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the
    // count of valid pairs
    static int countPairs(int arr[], int n)
    {
     
        // To store the required count
        int cnt = 0;
     
        // For each index pair (i, j)
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
     
                // If current pair is valid
                // then increment the count
                if (arr[i] != arr[j])
                    cnt++;
            }
        }
        return cnt;
    }
     
    // Driven code
    public static void main (String[] args)
    {
        int arr[] = { 1, 1, 2 };
        int n = arr.length;
     
        System.out.println(countPairs(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 implementation of the approach
 
# Function to return the
# count of valid pairs
def countPairs(arr, n):
 
    # To store the required count
    cnt = 0;
 
    # For each index pair (i, j)
    for i in range(n):
        for j in range(i + 1, n):
 
            # If current pair is valid
            # then increment the count
            if (arr[i] != arr[j]):
                cnt += 1;
 
    return cnt;
 
# Driver code
if __name__ == '__main__':
    arr = [ 1, 1, 2 ];
    n = len(arr);
 
    print(countPairs(arr, n));
     
# This code is contributed by 29AjayKumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the
    // count of valid pairs
    static int countPairs(int []arr, int n)
    {
     
        // To store the required count
        int cnt = 0;
     
        // For each index pair (i, j)
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
     
                // If current pair is valid
                // then increment the count
                if (arr[i] != arr[j])
                    cnt++;
            }
        }
        return cnt;
    }
     
    // Driven code
    public static void Main()
    {
        int []arr = { 1, 1, 2 };
        int n = arr.Length;
     
        Console.WriteLine(countPairs(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the
// count of valid pairs
function countPairs(arr, n)
{
 
    // To store the required count
    var cnt = 0;
 
    // For each index pair (i, j)
    for (var i = 0; i < n; i++) {
        for (var j = i + 1; j < n; j++) {
 
            // If current pair is valid
            // then increment the count
            if (arr[i] != arr[j])
                cnt++;
        }
    }
    return cnt;
}
 
// Driven code
var arr = [ 1, 1, 2 ];
var n = arr.length;
document.write(countPairs(arr, n));
 
</script>
Output: 
2

 

Time Complexity: O(N2)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :