# Count unequal element pairs from the given Array

Given an array arr[] of N elements. The task is to count the total number of indices (i, j) such that arr[i] != arr[j] and i < j.

Examples:

Input: arr[] = {1, 1, 2}
Output: 2
(1, 2) and (1, 2) are the only valid pairs.

Input: arr[] = {1, 2, 3}
Output: 3

Input: arr[] = {1, 1, 1}
Output: 0

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Initialise a count variable cnt = 0 and run two nested loops to check every possible pair whether the the current pair is valid or not. If it is valid, then increment the count variable. Finally, print the count of valid pairs.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to return the ` `// count of valid pairs ` `int` `countPairs(``int` `arr[], ``int` `n) ` `{ ` ` `  `    ``// To store the required count ` `    ``int` `cnt = 0; ` ` `  `    ``// For each index pair (i, j) ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``for` `(``int` `j = i + 1; j < n; j++) { ` ` `  `            ``// If current pair is valid ` `            ``// then increment the count ` `            ``if` `(arr[i] != arr[j]) ` `                ``cnt++; ` `        ``} ` `    ``} ` `    ``return` `cnt; ` `} ` ` `  `// Driven code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 1, 2 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(``int``); ` ` `  `    ``cout << countPairs(arr, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach  ` `class` `GFG  ` `{ ` `     `  `    ``// Function to return the  ` `    ``// count of valid pairs  ` `    ``static` `int` `countPairs(``int` `arr[], ``int` `n)  ` `    ``{  ` `     `  `        ``// To store the required count  ` `        ``int` `cnt = ``0``;  ` `     `  `        ``// For each index pair (i, j)  ` `        ``for` `(``int` `i = ``0``; i < n; i++)  ` `        ``{  ` `            ``for` `(``int` `j = i + ``1``; j < n; j++)  ` `            ``{  ` `     `  `                ``// If current pair is valid  ` `                ``// then increment the count  ` `                ``if` `(arr[i] != arr[j])  ` `                    ``cnt++;  ` `            ``}  ` `        ``}  ` `        ``return` `cnt;  ` `    ``}  ` `     `  `    ``// Driven code  ` `    ``public` `static` `void` `main (String[] args) ` `    ``{  ` `        ``int` `arr[] = { ``1``, ``1``, ``2` `};  ` `        ``int` `n = arr.length;  ` `     `  `        ``System.out.println(countPairs(arr, n));  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to return the ` `# count of valid pairs ` `def` `countPairs(arr, n): ` ` `  `    ``# To store the required count ` `    ``cnt ``=` `0``; ` ` `  `    ``# For each index pair (i, j) ` `    ``for` `i ``in` `range``(n): ` `        ``for` `j ``in` `range``(i ``+` `1``, n): ` ` `  `            ``# If current pair is valid ` `            ``# then increment the count ` `            ``if` `(arr[i] !``=` `arr[j]): ` `                ``cnt ``+``=` `1``; ` ` `  `    ``return` `cnt; ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``arr ``=` `[ ``1``, ``1``, ``2` `]; ` `    ``n ``=` `len``(arr); ` ` `  `    ``print``(countPairs(arr, n)); ` `     `  `# This code is contributed by 29AjayKumar `

## C#

 `// C# implementation of the approach  ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `     `  `    ``// Function to return the  ` `    ``// count of valid pairs  ` `    ``static` `int` `countPairs(``int` `[]arr, ``int` `n)  ` `    ``{  ` `     `  `        ``// To store the required count  ` `        ``int` `cnt = 0;  ` `     `  `        ``// For each index pair (i, j)  ` `        ``for` `(``int` `i = 0; i < n; i++)  ` `        ``{  ` `            ``for` `(``int` `j = i + 1; j < n; j++)  ` `            ``{  ` `     `  `                ``// If current pair is valid  ` `                ``// then increment the count  ` `                ``if` `(arr[i] != arr[j])  ` `                    ``cnt++;  ` `            ``}  ` `        ``}  ` `        ``return` `cnt;  ` `    ``}  ` `     `  `    ``// Driven code  ` `    ``public` `static` `void` `Main() ` `    ``{  ` `        ``int` `[]arr = { 1, 1, 2 };  ` `        ``int` `n = arr.Length;  ` `     `  `        ``Console.WriteLine(countPairs(arr, n));  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

Output:

```2
```

Time Complexity: O(N2)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : AnkitRai01, 29AjayKumar