Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Count triplets such that product of two numbers added with third number is N

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a positive integer N, the task is to find the number of triplets (A, B, C) where A, B, C are positive integers such that the product of two numbers added with the third number is N i.e., A * B + C = N.

Examples:

Input: N = 3
Output: 3
Explanation:
Following are the possible triplets satisfying the given criteria:

  1. (1, 1, 2): The value of 1*1 + 2 = 3.
  2. (1, 2, 1): The value of 1*2 + 1 = 3.
  3. (2, 1, 1): The value of 2*1 + 1 = 3.

Therefore, the total count of such triplets is 3.

Input: N = 5
Output: 8

Approach: The given problem can be solved by rearranging the equation A * B + C = N as A * B = N – C. Now, the only possible values A and B can have to satisfy the above equation is the divisors of N – C. For Example, if the value of N – C = 18, having 6 divisors that are 1, 2, 3, 6, 9, 18. So, values of A, B satisfying the above equation are: (1, 18), (2, 9), (3, 6), (6, 3), (9, 2), (18, 1). So, for the value of N – C = 18, possible values of A, B are 6, i.e., the number of divisors of N – C(= 18). Follow the steps below to solve the given problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the divisors of
// the number (N - i)
int countDivisors(int n)
{
    // Stores the resultant count of
    // divisors of (N - i)
    int divisors = 0;
    int i;
 
    // Iterate over range [1, sqrt(N)]
    for (i = 1; i * i < n; i++) {
        if (n % i == 0) {
            divisors++;
        }
    }
    if (i - (n / i) == 1) {
        i--;
    }
    for (; i >= 1; i--) {
        if (n % i == 0) {
            divisors++;
        }
    }
    // Return the total divisors
    return divisors;
}
 
// Function to find the number of triplets
// such that A * B - C = N
int possibleTriplets(int N)
{
    int count = 0;
 
    // Loop to fix the value of C
    for (int i = 1; i < N; i++) {
 
        // Adding the number of
        // divisors in count
        count += countDivisors(N - i);
    }
 
    // Return count of triplets
    return count;
}
 
// Driver Code
int main()
{
    int N = 10;
    cout << possibleTriplets(N);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
class GFG
{
   
      // Function to find the divisors of
    // the number (N - i)
    static int countDivisors(int n)
    {
       
        // Stores the resultant count of
        // divisors of (N - i)
        int divisors = 0;
        int i;
 
        // Iterate over range [1, sqrt(N)]
        for (i = 1; i * i < n; i++) {
            if (n % i == 0) {
                divisors++;
            }
        }
        if (i - (n / i) == 1) {
            i--;
        }
        for (; i >= 1; i--) {
            if (n % i == 0) {
                divisors++;
            }
        }
 
        // Return the total divisors
        return divisors;
    }
 
    // Function to find the number of triplets
    // such that A * B - C = N
    static int possibleTriplets(int N)
    {
        int count = 0;
 
        // Loop to fix the value of C
        for (int i = 1; i < N; i++) {
 
            // Adding the number of
            // divisors in count
            count += countDivisors(N - i);
        }
 
        // Return count of triplets
        return count;
    }
 
    // Driver Code
    public static void main (String[] args) {
       
        int N = 10;
        System.out.println(possibleTriplets(N));
    }
}
 
// This code is contributed by Dharanendra L V.

Python3




# Python program for the above approach
import math
 
# function to find the divisors of
# the number (N - i)
def countDivisors(n):
 
    # Stores the resultant count of
    # divisors of (N - i)
    divisors = 0
 
    # Iterate over range [1, sqrt(N)]
    for i in range(1, math.ceil(math.sqrt(n))+1):
        if n % i == 0:
            divisors = divisors+1
 
        if (i - (n / i) == 1):
            i = i-1
 
    for i in range(math.ceil(math.sqrt(n))+1, 1, -1):
        if (n % i == 0):
            divisors = divisors+1
 
     # Return the total divisors
    return divisors
 
    # def to find the number of triplets
    # such that A * B - C = N
 
 
def possibleTriplets(N):
    count = 0
 
    # Loop to fix the value of C
    for i in range(1, N):
 
        # Adding the number of
        # divisors in count
        count = count + countDivisors(N - i)
 
        # Return count of triplets
    return count
 
    # Driver Code
# Driver Code
if __name__ == "__main__":
    N = 10
    print(possibleTriplets(N))
 
# This code is contributed by Potta Lokesh

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the divisors of
// the number (N - i)
static int countDivisors(int n)
{
    // Stores the resultant count of
    // divisors of (N - i)
    int divisors = 0;
    int i;
 
    // Iterate over range [1, sqrt(N)]
    for (i = 1; i * i < n; i++) {
        if (n % i == 0) {
            divisors++;
        }
    }
    if (i - (n / i) == 1) {
        i--;
    }
    for (; i >= 1; i--) {
        if (n % i == 0) {
            divisors++;
        }
    }
    // Return the total divisors
    return divisors;
}
 
// Function to find the number of triplets
// such that A * B - C = N
static int possibleTriplets(int N)
{
    int count = 0;
 
    // Loop to fix the value of C
    for (int i = 1; i < N; i++) {
 
        // Adding the number of
        // divisors in count
        count += countDivisors(N - i);
    }
 
    // Return count of triplets
    return count;
}
 
// Driver Code
public static void Main()
{
    int N = 10;
    Console.Write(possibleTriplets(N));
}
}
 
// This code is contributed by SURENDRA_GANGWAR.

Javascript




<script>
// javascript program for the above approach
      // Function to find the divisors of
    // the number (N - i)
    function countDivisors(n)
    {
       
        // Stores the resultant count of
        // divisors of (N - i)
        var divisors = 0;
        var i;
 
        // Iterate over range [1, sqrt(N)]
        for (i = 1; i * i < n; i++) {
            if (n % i == 0) {
                divisors++;
            }
        }
        if (i - (n / i) == 1) {
            i--;
        }
        for (; i >= 1; i--) {
            if (n % i == 0) {
                divisors++;
            }
        }
 
        // Return the total divisors
        return divisors;
    }
 
    // Function to find the number of triplets
    // such that A * B - C = N
    function possibleTriplets(N)
    {
        var count = 0;
 
        // Loop to fix the value of C
        for (var i = 1; i < N; i++) {
 
            // Adding the number of
            // divisors in count
            count += countDivisors(N - i);
        }
 
        // Return count of triplets
        return count;
    }
 
    // Driver Code
    var N = 10;
    document.write(possibleTriplets(N));
 
// This code is contributed by shikhasingrajput
</script>

Output: 

23

 

Time Complexity: O(N*sqrt(N))
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 11 Oct, 2021
Like Article
Save Article
Similar Reads
Related Tutorials