Count the numbers < N which have equal number of divisors as K

Given two integers N and K, the task is to count all the numbers < N which have equal number of positive divisors as K.

Examples:

Input: n = 10, k = 5
Output: 3
2, 3 and 7 are the only numbers < 10 which have 2 divisors (equal to the number of divisors of 5)

Input: n = 500, k = 6
Output: 148



Approach:

  • Compute the number of divisor of each number < N and store the result in an array where arr[i] contains the number of divisors of i.
  • Traverse arr[], if arr[i] = arr[K] then update count = count + 1.
  • Print the value of count in the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count of the
// divisors of a number
int countDivisors(int n)
{
    // Count the number of
    // 2s that divide n
    int x = 0, ans = 1;
    while (n % 2 == 0) {
        x++;
        n = n / 2;
    }
    ans = ans * (x + 1);
  
    // n must be odd at this point.
    // So we can skip one element
    for (int i = 3; i <= sqrt(n); i = i + 2) {
  
        // While i divides n
        x = 0;
        while (n % i == 0) {
            x++;
            n = n / i;
        }
        ans = ans * (x + 1);
    }
  
    // This condition is to
    // handle the case when
    // n is a prime number > 2
    if (n > 2)
        ans = ans * 2;
  
    return ans;
}
  
int getTotalCount(int n, int k)
{
    int k_count = countDivisors(k);
  
    // Count the total elements
    // that have divisors exactly equal
    // to as that of k's
    int count = 0;
    for (int i = 1; i < n; i++)
        if (k_count == countDivisors(i))
            count++;
  
    // Exclude k from the result if it 
    // is smaller than n.
    if (k < n)
       count = count - 1;
  
    return count;
}
  
// Driver code
int main()
{
    int n = 500, k = 6;
    cout << getTotalCount(n, k);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
  
public class GFG{
  
    // Function to return the count of the 
    // divisors of a number 
    static int countDivisors(int n) 
    
        // Count the number of 
        // 2s that divide n 
        int x = 0, ans = 1
        while (n % 2 == 0) { 
            x++; 
            n = n / 2
        
        ans = ans * (x + 1); 
      
        // n must be odd at this point. 
        // So we can skip one element 
        for (int i = 3; i <= Math.sqrt(n); i = i + 2) { 
      
            // While i divides n 
            x = 0
            while (n % i == 0) { 
                x++; 
                n = n / i; 
            
            ans = ans * (x + 1); 
        
      
        // This condition is to 
        // handle the case when 
        // n is a prime number > 2 
        if (n > 2
            ans = ans * 2
      
        return ans; 
    
      
    static int getTotalCount(int n, int k) 
    
        int k_count = countDivisors(k); 
      
        // Count the total elements 
        // that have divisors exactly equal 
        // to as that of k's 
        int count = 0
        for (int i = 1; i < n; i++) 
            if (k_count == countDivisors(i)) 
                count++; 
      
        // Exclude k from the result if it 
        // is smaller than n. 
        if (k < n) 
        count = count - 1
      
        return count; 
    
      
    // Driver code
     public static void main(String []args)
    
        int n = 500, k = 6
        System.out.println(getTotalCount(n, k)); 
    
    // This code is contributed by Ryuga
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to return the count of 
# the divisors of a number
def countDivisors(n):
      
    # Count the number of 2s that divide n
    x, ans = 0, 1
    while (n % 2 == 0):
        x += 1
        n = n / 2
    ans = ans * (x + 1)
  
    # n must be odd at this point.
    # So we can skip one element
    for i in range(3, int(n ** 1 / 2) + 1, 2):
          
        # While i divides n
        x = 0
        while (n % i == 0):
            x += 1
            n = n / i
        ans = ans * (x + 1)
  
    # This condition is to handle the 
    # case when n is a prime number > 2
    if (n > 2):
        ans = ans * 2
  
    return ans
  
def getTotalCount(n, k):
    k_count = countDivisors(k)
  
    # Count the total elements that
    # have divisors exactly equal
    # to as that of k's
    count = 0
    for i in range(1, n):
        if (k_count == countDivisors(i)):
            count += 1
  
    # Exclude k from the result if it 
    # is smaller than n.
    if (k < n):
        count = count - 1
  
    return count
  
# Driver code
if __name__ == '__main__':
    n, k = 500, 6
    print(getTotalCount(n, k))
  
# This code is contributed 
# by 29AjayKumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
                      
public class GFG{
   
    // Function to return the count of the 
    // divisors of a number 
    static int countDivisors(int n) 
    
        // Count the number of 
        // 2s that divide n 
        int x = 0, ans = 1; 
        while (n % 2 == 0) { 
            x++; 
            n = n / 2; 
        
        ans = ans * (x + 1); 
       
        // n must be odd at this point. 
        // So we can skip one element 
        for (int i = 3; i <= Math.Sqrt(n); i = i + 2) { 
       
            // While i divides n 
            x = 0; 
            while (n % i == 0) { 
                x++; 
                n = n / i; 
            
            ans = ans * (x + 1); 
        
       
        // This condition is to 
        // handle the case when 
        // n is a prime number > 2 
        if (n > 2) 
            ans = ans * 2; 
       
        return ans; 
    
       
    static int getTotalCount(int n, int k) 
    
        int k_count = countDivisors(k); 
       
        // Count the total elements 
        // that have divisors exactly equal 
        // to as that of k's 
        int count = 0; 
        for (int i = 1; i < n; i++) 
            if (k_count == countDivisors(i)) 
                count++; 
       
        // Exclude k from the result if it 
        // is smaller than n. 
        if (k < n) 
        count = count - 1; 
       
        return count; 
    
       
    // Driver code
     public static void Main()
    
        int n = 500, k = 6; 
        Console.WriteLine(getTotalCount(n, k)); 
    }    
}
  
// This code is contributed by 29AjayKumar

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
//PHP  implementation of the approach
// Function to return the count of the
// divisors of a number
  
function  countDivisors($n)
{
    // Count the number of
    // 2s that divide n
    $x = 0;
    $ans = 1;
    while ($n % 2 == 0) {
        $x++;
        $n = $n / 2;
    }
    $ans = $ans * ($x + 1);
  
    // n must be odd at this point.
    // So we can skip one element
    for ($i = 3; $i <= sqrt($n); $i = $i + 2) {
  
        // While i divides n
        $x = 0;
        while ($n % $i == 0) {
            $x++;
            $n = $n / $i;
        }
        $ans = $ans * ($x + 1);
    }
  
    // This condition is to
    // handle the case when
    // n is a prime number > 2
    if ($n > 2)
        $ans = $ans * 2;
  
    return $ans;
}
  
function  getTotalCount($n, $k)
{
    $k_count = countDivisors($k);
  
    // Count the total elements
    // that have divisors exactly equal
    // to as that of k's
    $count = 0;
    for ($i = 1; $i < $n; $i++)
        if ($k_count == countDivisors($i))
            $count++;
  
    // Exclude k from the result if it 
    // is smaller than n.
    if ($k < $n)
    $count = $count - 1;
  
    return $count;
}
  
// Driver code
  
    $n = 500;
    $k = 6;
    echo  getTotalCount($n, $k);
  
#This code is contributed by Sachin..
?>

chevron_right


Output:

148

Optimization:
The above solution can be optimized using Sieve technique. Please refer Count number of integers less than or equal to N which has exactly 9 divisors for details.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Ryuga, 29AjayKumar, Sach_Code