Count the number of ways to traverse a Matrix
Given a two-dimensional matrix, in how way can someone traverse it from top-left to bottom-right?
Condition- At any particular cell the possible moves are either down or right, no other steps possible.
Stop when the end is reached.
Examples:
Input : 3 3 Output : 6 Input : 5 5 Output : 70
If we look closely, we will find that the number of ways a cell can be reached is = Number of ways it can reach the cell above it + number of ways it can reach the cell which is left of it.
So, start filling the 2D array according to it and return the last cell after completely filling the array.
Below is the implementation of above approach:
C++
// C++ program using recursive solution to count // number of ways to reach mat[m-1][n-1] from // mat[0][0] in a matrix mat[][] #include <bits/stdc++.h> using namespace std; // Returns The number of way from top-left // to mat[m-1][n-1] int countPaths( int m, int n) { // Return 1 if it is the first row or // first column if (m == 1 || n == 1) return 1; // Recursively find the no of way to // reach the last cell. return countPaths(m - 1, n) + countPaths(m, n - 1); } // Driver code int main() { int n = 5; int m = 5; cout << countPaths(n, m); return 0; } |
Java
// Java program using recursive // solution to count number of // ways to reach mat[m-1][n-1] from // mat[0][0] in a matrix mat[][] import java.lang.*; import java.util.*; class GFG { // Returns The number of way // from top-left to mat[m-1][n-1] public int countPaths( int m, int n) { // Return 1 if it is the first // row or first column if (m == 1 || n == 1 ) return 1 ; // Recursively find the no of // way to reach the last cell. return countPaths(m - 1 , n) + countPaths(m, n - 1 ); } // Driver Code public static void main(String args[]) { GFG g = new GFG(); int n = 5 , m = 5 ; System.out.println(g.countPaths(n, m)); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
Python3
# Python 3 program using recursive solution to count # number of ways to reach mat[m-1][n-1] from # mat[0][0] in a matrix mat[][] # Returns The number of way from top-left # to mat[m-1][n-1] def countPaths(m, n) : # Return 1 if it is the first row or # first column if m = = 1 or n = = 1 : return 1 # Recursively find the no of way to # reach the last cell. return (countPaths(m - 1 , n) + countPaths(m, n - 1 )) # Driver code if __name__ = = "__main__" : n = 5 m = 5 print (countPaths(n, m)) # This code is contributed by ANKITRAI1 |
C#
// C# program using recursive // solution to count number of // ways to reach mat[m-1][n-1] from // mat[0][0] in a matrix mat[][] using System; class GFG { // Returns The number of way // from top-left to mat[m-1][n-1] public int countPaths( int m, int n) { // Return 1 if it is the first // row or first column if (m == 1 || n == 1) return 1; // Recursively find the no of // way to reach the last cell. return countPaths(m - 1, n) + countPaths(m, n - 1); } // Driver Code public static void Main() { GFG g = new GFG(); int n = 5, m = 5; Console.WriteLine(g.countPaths(n, m)); Console.Read(); } } // This code is contributed // by SoumikMondal |
PHP
<?php // PHP program using recursive // solution to count number of // ways to reach mat[m-1][n-1] from // mat[0][0] in a matrix mat[][] // Returns The number of way // from top-left to mat[m-1][n-1] function countPaths( $m , $n ) { // Return 1 if it is the // first row or first column if ( $m == 1 || $n == 1) return 1; // Recursively find the no of // way to reach the last cell. return countPaths( $m - 1, $n ) + countPaths( $m , $n - 1); } // Driver code $n = 5; $m = 5; echo countPaths( $n , $m ); // This code is contributed by jit_t ?> |
70
The above solution has exponential time complexity. It can be optimized using Dynamic Programming as there are overlapping subproblems (highlighted below in partial recursion tree for m=3, n=3)
CP(3, 3) / \ CP(2, 3) CP(3, 2) / \ / \ CP(1,3) CP(2,2) CP(2,2) CP(3,1)
C++
// A simple recursive solution to count // number of ways to reach mat[m-1][n-1] from // mat[0][0] in a matrix mat[][] #include <bits/stdc++.h> using namespace std; // Returns The number of way from top-left // to mat[m-1][n-1] int countPaths( int m, int n) { int dp[m+1][n+1]; for ( int i=1; i<=m; i++) { for ( int j=1; j<=n; j++) { if (i==1 || j == 1) dp[i][j] = 1; else dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } return dp[m][n]; } // Driver code int main() { int n = 5; int m = 5; cout << countPaths(n, m); return 0; } |
Java
// A simple recursive solution to count // number of ways to reach mat[m-1][n-1] from // mat[0][0] in a matrix mat[][] class GFG { // Returns The number of way from top-left // to mat[m-1][n-1] static int countPaths( int m, int n) { int [][]dp= new int [m+ 1 ][n+ 1 ]; for ( int i= 1 ; i<=m; i++) { for ( int j= 1 ; j<=n; j++) { if (i== 1 || j == 1 ) dp[i][j] = 1 ; else dp[i][j] = dp[i- 1 ][j] + dp[i][j- 1 ]; } } return dp[m][n]; } // Driver code public static void main(String []args) { int n = 5 ; int m = 5 ; System.out.println(countPaths(n, m)); } } // This code is contributed // by ihritik (Hritik Raj) |
Python 3
# A simple recursive solution to # count number of ways to reach # mat[m-1][n-1] from mat[0][0] # in a matrix mat[][] # Returns The number of way # from top-left to mat[m-1][n-1] def countPaths(m, n): dp = [[ 0 for i in range (m + 1 )] for j in range (n + 1 )] for i in range ( 1 , m + 1 ): for j in range ( 1 , n + 1 ): if (i = = 1 or j = = 1 ): dp[i][j] = 1 else : dp[i][j] = (dp[i - 1 ][j] + dp[i][j - 1 ]) return dp[m][n] # Driver code if __name__ = = "__main__" : n = 5 m = 5 print (countPaths(n, m)) # This code is contributed # by ChitraNayal |
C#
// A simple recursive solution to count // number of ways to reach mat[m-1][n-1] from // mat[0][0] in a matrix mat[][] using System; class GFG { // Returns The number of way from top-left // to mat[m-1][n-1] static int countPaths( int m, int n) { int [,]dp= new int [m+1,n+1]; for ( int i=1; i<=m; i++) { for ( int j=1; j<=n; j++) { if (i==1 || j == 1) dp[i,j] = 1; else dp[i,j] = dp[i-1,j] + dp[i,j-1]; } } return dp[m,n]; } // Driver code public static void Main() { int n = 5; int m = 5; Console.WriteLine(countPaths(n, m)); } } // This code is contributed // by ihritik (Hritik Raj) |
PHP
<?php // A simple recursive solution to count // number of ways to reach mat[m-1][n-1] // from mat[0][0] in a matrix mat[][] // Returns The number of way from top-left // to mat[m-1][n-1] function countPaths( $m , $n ) { $dp ; for ( $i = 1; $i <= $m ; $i ++) { for ( $j = 1; $j <= $n ; $j ++) { if ( $i == 1 || $j == 1) $dp [ $i ][ $j ] = 1; else $dp [ $i ][ $j ] = $dp [ $i - 1][ $j ] + $dp [ $i ][ $j - 1]; } } return $dp [ $m ][ $n ]; } // Driver code $n = 5; $m = 5; echo countPaths( $n , $m ); // This code is contributed by Rajput-Ji ?> |
70
Time Complexity : O(m * n)
Recommended Posts:
- Count number of ways to reach a given score in a Matrix
- Traverse matrix in L shape
- Number of ways to reach the end of matrix with non-zero AND value
- Number of ways to reach (X, Y) in a matrix starting from the origin
- Count number of ways to get Odd Sum
- Count number of ways to arrange first N numbers
- Count number of ways to jump to reach end
- Count number of ways to partition a set into k subsets
- Count number of ways to cover a distance
- Count number of ways to reach destination in a Maze
- Count number of ways to reach a given score in a game
- Count number of ways to reach destination in a Maze using BFS
- Count number of ways to fill a "n x 4" grid using "1 x 4" tiles
- Count number of ways to reach destination in a maze
- Count of cells in a matrix which give a Fibonacci number when the count of adjacent cells is added
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.