Given two integers N and K, the task is to count the number of ways to divide N into K groups of positive integers such that their sum is N and the number of elements in groups follows a non-decreasing order (i.e group[i] <= group[i+1]).
Examples:
Input: N = 8, K = 4
Output: 5
Explanation:
There are 5 groups such that their sum is 8 and the number of positive integers in each group is 4.
[1, 1, 1, 5], [1, 1, 2, 4], [1, 1, 3, 3], [1, 2, 2, 3], [2, 2, 2, 2]
Input: N = 24, K = 5
Output: 164
Explanation:
There are 164 such groups such that their sum is 24 and number of positive integers in each group is 5
Different Approaches:
1. Naive Approach (Time: O(NK), Space: O(N))
2. Memoization (Time: O((N3*K), Space: O(N2*K))
3. Bottom-Up Dynamic Programming (Time: O(N*K), Space: O(N*K))
Naive Approach: We can solve this problem using recursion. At each step of recursion put all the values greater than equal to the previously computed value.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int calculate( int pos, int prev,
int left, int k)
{
if (pos == k) {
if (left == 0)
return 1;
else
return 0;
}
if (left == 0)
return 0;
int answer = 0;
for ( int i = prev; i <= left; i++) {
answer += calculate(pos + 1, i,
left - i, k);
}
return answer;
}
int countWaystoDivide( int n, int k)
{
return calculate(0, 1, n, k);
}
int main()
{
int N = 8;
int K = 4;
cout << countWaystoDivide(N, K);
return 0;
}
|
Java
import java.util.*;
class GFG{
static int calculate( int pos, int prev,
int left, int k)
{
if (pos == k)
{
if (left == 0 )
return 1 ;
else
return 0 ;
}
if (left == 0 )
return 0 ;
int answer = 0 ;
for ( int i = prev; i <= left; i++)
{
answer += calculate(pos + 1 , i,
left - i, k);
}
return answer;
}
static int countWaystoDivide( int n, int k)
{
return calculate( 0 , 1 , n, k);
}
public static void main(String[] args)
{
int N = 8 ;
int K = 4 ;
System.out.print(countWaystoDivide(N, K));
}
}
|
Python3
def calculate(pos, prev, left, k):
if (pos = = k):
if (left = = 0 ):
return 1 ;
else :
return 0 ;
if (left = = 0 ):
return 0 ;
answer = 0 ;
for i in range (prev, left + 1 ):
answer + = calculate(pos + 1 , i,
left - i, k);
return answer;
def countWaystoDivide(n, k):
return calculate( 0 , 1 , n, k);
if __name__ = = '__main__' :
N = 8 ;
K = 4 ;
print (countWaystoDivide(N, K));
|
C#
using System;
class GFG{
static int calculate( int pos, int prev,
int left, int k)
{
if (pos == k)
{
if (left == 0)
return 1;
else
return 0;
}
if (left == 0)
return 0;
int answer = 0;
for ( int i = prev; i <= left; i++)
{
answer += calculate(pos + 1, i,
left - i, k);
}
return answer;
}
static int countWaystoDivide( int n, int k)
{
return calculate(0, 1, n, k);
}
public static void Main(String[] args)
{
int N = 8;
int K = 4;
Console.Write(countWaystoDivide(N, K));
}
}
|
Javascript
<script>
function calculate(pos, prev,
left, k)
{
if (pos == k) {
if (left == 0)
return 1;
else
return 0;
}
if (left == 0)
return 0;
let answer = 0;
for (let i = prev; i <= left; i++) {
answer += calculate(pos + 1, i,
left - i, k);
}
return answer;
}
function countWaystoDivide(n, k)
{
return calculate(0, 1, n, k);
}
let N = 8;
let K = 4;
document.write(countWaystoDivide(N, K));
</script>
|
Time complexity: O(NK)
Auxiliary Space: O(N).
Memoization Approach: In the previous approach we can see that we are solving the subproblems repeatedly, i.e. it follows the property of Overlapping Subproblems. So we can memoize the same using the DP table.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int dp[100][100][100];
int calculate( int pos, int prev,
int left, int k)
{
if (pos == k) {
if (left == 0)
return 1;
else
return 0;
}
if (left == 0)
return 0;
if (dp[pos][prev][left] != -1)
return dp[pos][prev][left];
int answer = 0;
for ( int i = prev; i <= left; i++) {
answer += calculate(pos + 1, i,
left - i, k);
}
return dp[pos][prev][left] = answer;
}
int countWaystoDivide( int n, int k)
{
memset (dp, -1, sizeof (dp));
return calculate(0, 1, n, k);
}
int main()
{
int N = 8;
int K = 4;
cout << countWaystoDivide(N, K);
return 0;
}
|
Java
import java.util.*;
class GFG{
static int [][][]dp = new int [ 100 ][ 100 ][ 100 ];
static int calculate( int pos, int prev,
int left, int k)
{
if (pos == k)
{
if (left == 0 )
return 1 ;
else
return 0 ;
}
if (left == 0 )
return 0 ;
if (dp[pos][prev][left] != - 1 )
return dp[pos][prev][left];
int answer = 0 ;
for ( int i = prev; i <= left; i++)
{
answer += calculate(pos + 1 , i,
left - i, k);
}
return dp[pos][prev][left] = answer;
}
static int countWaystoDivide( int n, int k)
{
for ( int i = 0 ; i < 100 ; i++)
{
for ( int j = 0 ; j < 100 ; j++)
{
for ( int l = 0 ; l < 100 ; l++)
dp[i][j][l] = - 1 ;
}
}
return calculate( 0 , 1 , n, k);
}
public static void main(String[] args)
{
int N = 8 ;
int K = 4 ;
System.out.print(countWaystoDivide(N, K));
}
}
|
Python3
dp = [[[ 0 for i in range ( 50 )]
for j in range ( 50 )]
for j in range ( 50 )]
def calculate(pos, prev, left, k):
if (pos = = k):
if (left = = 0 ):
return 1 ;
else :
return 0 ;
if (left = = 0 ):
return 0 ;
if (dp[pos][prev][left] ! = - 1 ):
return dp[pos][prev][left];
answer = 0 ;
for i in range (prev,left + 1 ):
answer + = calculate(pos + 1 , i,
left - i, k);
dp[pos][prev][left] = answer;
return dp[pos][prev][left];
def countWaystoDivide(n, k):
for i in range ( 50 ):
for j in range ( 50 ):
for l in range ( 50 ):
dp[i][j][l] = - 1 ;
return calculate( 0 , 1 , n, k);
if __name__ = = '__main__' :
N = 8 ;
K = 4 ;
print (countWaystoDivide(N, K));
|
C#
using System;
class GFG{
static int [,,]dp = new int [50, 50, 50];
static int calculate( int pos, int prev,
int left, int k)
{
if (pos == k)
{
if (left == 0)
return 1;
else
return 0;
}
if (left == 0)
return 0;
if (dp[pos, prev, left] != -1)
return dp[pos, prev, left];
int answer = 0;
for ( int i = prev; i <= left; i++)
{
answer += calculate(pos + 1, i,
left - i, k);
}
return dp[pos, prev, left] = answer;
}
static int countWaystoDivide( int n, int k)
{
for ( int i = 0; i < 50; i++)
{
for ( int j = 0; j < 50; j++)
{
for ( int l = 0; l < 50; l++)
dp[i, j, l] = -1;
}
}
return calculate(0, 1, n, k);
}
public static void Main(String[] args)
{
int N = 8;
int K = 4;
Console.Write(countWaystoDivide(N, K));
}
}
|
Javascript
<script>
let dp = new Array(500);
for (let i=0;i<500;i++)
{
dp[i]= new Array(500);
for (let j=0;j<500;j++)
{
dp[i][j]= new Array(500);
for (let k=0;k<500;k++)
dp[i][j][k]=0;
}
}
function calculate(pos,prev,left,k)
{
if (pos == k)
{
if (left == 0)
return 1;
else
return 0;
}
if (left == 0)
return 0;
if (dp[pos][prev][left] != -1)
return dp[pos][prev][left];
let answer = 0;
for (let i = prev; i <= left; i++)
{
answer += calculate(pos + 1, i,
left - i, k);
}
return dp[pos][prev][left] = answer;
}
function countWaystoDivide(n,k)
{
for (let i = 0; i < 500; i++)
{
for (let j = 0; j < 500; j++)
{
for (let l = 0; l < 500; l++)
dp[i][j][l] = -1;
}
}
return calculate(0, 1, n, k);
}
let N = 8;
let K = 4;
document.write(countWaystoDivide(N, K));
</script>
|
Output:
5
Time complexity: O(N^3 * K)
Auxiliary Space: O(N^2 * K).
Bottom-Up DP: We are asked to find CountWaystoDivide(n,k) So the recurrence approach and explanation of DP is:
CountWaystoDivide( n , k ) = CountWaystoDivide( n-k , k ) + CountWaystoDivide( n-1 , k-1 )
Explanation:
Divide CountWaystoDivide( n , k ) into two parts where
- If first element is 1 then the rest form a total of n-1 divide into k-1 so CountWaystoDivide( n-1 , k-1 )
- If first element is greater than 1 then, we can subtract 1 from every element and get a valid partition of n-k into k parts, hence CountWaystoDivide( n-k , k ).
Mathematical Explanation of DP:
- As each group must have at least one person, so, give each group one person, then we are left with n-k persons, which can we divided into 1,2,3..or k groups. Thus our dp will be: dp[n][k] = dp[n-k][1] + dp[n-k][2] + dp[n-k][3] + …. + dp[n-k][k].
- At first look, the previous might give O(N3) vibes, but with a little manipulation we can optimize it:
dp[n][k] = dp[(n-1)-(k-1)][1] + dp[(n-1)-(k-1)][2] + … + dp[(n-1)-(k-1)][k-1] + dp[(n-1)-(k-1)][k]
From the recurrence, we can write:
dp[n][k] = dp[n-1][k-1] + dp[n-k][k]
Steps to solve the problem using DP:
- Initialize a 2-D array dp[][] of size n+1, k+1 where dp[i][j] will store the optimal solution to divide n into k groups.
- For each value from i=0 to n, dp[n][1] will be 1 since total ways to divide n into 1 is 1. also dp[0][0] will be 1.
DP states are updated as follows:
- If i>=j then dp[i][j] = dp[i-1][j-1] + dp[i-j][j]
- otherwise i-j<0 and dp[i-j][j] become zero so dp[i][j] = dp[i-1][j-1]
C++
#include <bits/stdc++.h>
using namespace std;
int countWaystoDivide( int n, int k)
{
if (n < k)
return 0;
vector<vector< int > > dp(n + 1, vector< int >(k + 1));
for ( int i = 1; i <= n; i++)
dp[i][1]
= 1;
dp[0][0] = 1;
for ( int i = 1; i <= n; i++) {
for ( int j = 2; j <= k; j++) {
if (i >= j)
dp[i][j] = dp[i - j][j] + dp[i - 1][j - 1];
else
dp[i][j]
= dp[i - 1][j - 1];
}
}
return dp[n][k];
}
int main()
{
int N = 8;
int K = 4;
cout << countWaystoDivide(N, K);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int countWaystoDivide( int n, int k)
{
if (n < k)
return 0 ;
int [][]dp = new int [n+ 1 ][k+ 1 ];
for ( int i = 1 ; i <= n; i++)
dp[i][ 1 ]
= 1 ;
dp[ 0 ][ 0 ] = 1 ;
for ( int i = 1 ; i <= n; i++) {
for ( int j = 2 ; j <= k; j++) {
if (i >= j)
dp[i][j] = dp[i - j][j] + dp[i - 1 ][j - 1 ];
else
dp[i][j]
= dp[i - 1 ][j - 1 ];
}
}
return dp[n][k];
}
public static void main (String[] args)
{
int N = 8 ;
int K = 4 ;
System.out.println(countWaystoDivide(N, K));
}
}
|
Python3
def countWaystoDivide(n, k):
if (n < k):
return 0
dp = [[ 0 for i in range (k + 1 )] for i in range (n + 1 )]
for i in range ( 1 , n + 1 ):
dp[i][ 1 ] = 1
dp[ 0 ][ 0 ] = 1
for i in range ( 1 , n + 1 ):
for j in range ( 2 , k + 1 ):
if (i > = j):
dp[i][j] = dp[i - 1 ][j - 1 ] + dp[i - j][j]
else :
dp[i][j] = dp[i - 1 ][j - 1 ]
return dp[n][k]
if __name__ = = '__main__' :
N = 8
K = 4
print (countWaystoDivide(N, K))
|
C#
using System;
using System.Collections.Generic;
class GFG {
static int countWaystoDivide( int n, int k)
{
if (n < k)
return 0;
int [,] dp = new int [n + 1, k + 1];
for ( int i = 1; i <= n; i++)
dp[i, 1] = 1;
dp[0, 0] = 1;
for ( int i = 1; i <= n; i++) {
for ( int j = 2; j <= k; j++) {
if (i >= j)
dp[i,j] = dp[i - j,j] + dp[i - 1,j - 1];
else
dp[i,j] = dp[i - 1, j - 1];
}
}
return dp[n,k];
}
static void Main() {
int N = 8;
int K = 4;
Console.Write(countWaystoDivide(N, K));
}
}
|
Javascript
<script>
function countWaystoDivide(n, k)
{
if (n < k)
return 0;
let dp = new Array(n + 1);
for (let i = 0; i < n + 1; i++)
{
dp[i] = new Array(k + 1);
for (let j = 0; j < k + 1; j++)
{
dp[i][j] = 0;
}
}
for (let i = 1; i <= n; i++)
dp[i][1]
= 1;
dp[0][0] = 1;
for (let i = 1; i <= n; i++) {
for (let j = 2; j <= k; j++) {
if (i >= j)
dp[i][j] = dp[i - j][j] + dp[i - 1][j - 1];
else
dp[i][j]
= dp[i - 1][j - 1];
}
}
return dp[n][k];
}
let N = 8;
let K = 4;
document.write(countWaystoDivide(N, K));
</script>
|
Time complexity: O(N * K)
Auxiliary Space: O(N * K)