Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count the number of rectangles such that ratio of sides lies in the range [a,b]

  • Last Updated : 26 May, 2021

Given the length and breadth of N rectangles and a range i.e. [a, b], the task is to count the number of rectangles whose sides(larger/smaller) ratio is in the range [a, b].
Examples: 

Input: {{165, 100}, {180, 100}, {100, 170}}, a = 1.6, b = 1.7 
Output:
165/100 = 1.65 
170/100 = 1.7 
Input: {{10, 12}, {26, 19}}, a = 0.8, b = 1.2 
Output: 1

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

Approach: Iterate in the array of pairs, and increase the counter when max(a[i].first, a[i].second)/min(a[i].first, a[i].second) lies in the range a and b. 
Below is the implementation of the above approach: 
 

C++




// C++ program to print the length of the shortest
// subarray with all elements greater than X
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of ratios
int countRatios(pair<int, int> arr[], int n,
                           double a, double b)
{
    int count = 0;
 
    // count the number of ratios
    // by iterating
    for (int i = 0; i < n; i++) {
 
        double large = max(arr[i].first, arr[i].second);
        double small = min(arr[i].first, arr[i].second);
 
        // find ratio
        double ratio = large / small;
 
        // check if lies in range
        if (ratio >= a && ratio <= b)
            count += 1;
    }
 
    return count;
}
 
// Driver Code
int main()
{
    pair<int, int> arr[] = { { 165, 100 },
                             { 180, 100 },
                             { 100, 170 } };
    double a = 1.6, b = 1.7;
    int n = 3;
 
    cout << countRatios(arr, n, a, b);
 
    return 0;
}

Java




// Java program to print the length of the shortest
// subarray with all elements greater than X
class GFG
{
static int n = 3;
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to count the number of ratios
static int countRatios(pair []arr, int n,
                       double a, double b)
{
    int count = 0;
 
    // count the number of ratios
    // by iterating
    for (int i = 0; i < n; i++)
    {
        double large = Math.max(arr[i].first,
                                arr[i].second);
        double small = Math.min(arr[i].first,
                                arr[i].second);
 
        // find ratio
        double ratio = large / small;
 
        // check if lies in range
        if (ratio >= a && ratio <= b)
            count += 1;
    }
    return count;
}
 
// Driver Code
public static void main(String[] args)
{
    pair []arr = {new pair(165, 100),
                  new pair(180, 100),
                  new pair(100, 170)};
    double a = 1.6, b = 1.7;
    int n = 3;
 
    System.out.println(countRatios(arr, n, a, b));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 program to print the
# length of the shortest subarray
# with all elements greater than X
 
# Function to count the number of
# ratios
def countRatios(arr, n, a, b):
 
    count = 0
 
    # count the number of ratios
    # by iterating
    for i in range(n):
 
        large = max(arr[i][0],
                    arr[i][1])
        small = min(arr[i][0],
                    arr[i][1])
 
        # find ratio
        ratio = large / small
 
        # check if lies in range
        if (ratio >= a and
            ratio <= b):
            count += 1
 
    return count
 
# Driver Code
if __name__ == "__main__":
 
    arr = [[165, 100],
           [180, 100],
           [100, 170]]
    a = 1.6
    b = 1.7
    n = 3
    print(countRatios(arr, n, a, b))
 
# This code is contributed by Chitranayal

C#




// C# program to print the length of the shortest
// subarray with all elements greater than X
using System;
     
class GFG
{
static int n = 3;
class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to count the number of ratios
static int countRatios(pair []arr, int n,
                       double a, double b)
{
    int count = 0;
 
    // count the number of ratios
    // by iterating
    for (int i = 0; i < n; i++)
    {
        double large = Math.Max(arr[i].first,
                                arr[i].second);
        double small = Math.Min(arr[i].first,
                                arr[i].second);
 
        // find ratio
        double ratio = large / small;
 
        // check if lies in range
        if (ratio >= a && ratio <= b)
            count += 1;
    }
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    pair []arr = {new pair(165, 100),
                  new pair(180, 100),
                  new pair(100, 170)};
    double a = 1.6, b = 1.7;
    int n = 3;
 
    Console.WriteLine(countRatios(arr, n, a, b));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// JavaScript program to print
// the length of the shortest
// subarray with all elements greater than X
 
// Function to count the number of ratios
function countRatios(arr,n,a,b)
{
    let count = 0;
  
    // count the number of ratios
    // by iterating
    for (let i = 0; i < n; i++)
    {
        let large = Math.max(arr[i][0],
                                arr[i][1]);
        let small = Math.min(arr[i][0],
                                arr[i][1]);
  
        // find ratio
        let ratio = large / small;
  
        // check if lies in range
        if (ratio >= a && ratio <= b)
            count += 1;
    }
    return count;
}
 
// Driver Code
let arr = [[165, 100],
           [180, 100],
           [100, 170]];
            
let a = 1.6, b = 1.7;
let n = 3;
document.write(countRatios(arr, n, a, b));
 
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Output: 
2

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!