# Count the number of primes in the prefix sum array of the given array

• Last Updated : 14 May, 2021

Given an array arr[] of N integers, the task is to count the number of primes in the prefix sum array of the given array.
Examples:

Input: arr[] = {1, 4, 8, 4}
Output:
The prefix sum array is {1, 5, 13, 17}
and the three primes are 5, 13 and 17.
Input: arr[] = {1, 5, 2, 3, 7, 9}
Output:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach: Create the prefix sum array and then use Sieve of Eratosthenes to count the number of primes in the prefix sum array.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the count of primes``// in the given array``int` `primeCount(``int` `arr[], ``int` `n)``{``    ``// Find maximum value in the array``    ``int` `max_val = *max_element(arr, arr + n);` `    ``// USE SIEVE TO FIND ALL PRIME NUMBERS LESS``    ``// THAN OR EQUAL TO max_val``    ``// Create a boolean array "prime[0..n]". A``    ``// value in prime[i] will finally be false``    ``// if i is Not a prime, else true.``    ``vector<``bool``> prime(max_val + 1, ``true``);` `    ``// Remaining part of SIEVE``    ``prime[0] = ``false``;``    ``prime[1] = ``false``;``    ``for` `(``int` `p = 2; p * p <= max_val; p++) {` `        ``// If prime[p] is not changed, then``        ``// it is a prime``        ``if` `(prime[p] == ``true``) {` `            ``// Update all multiples of p``            ``for` `(``int` `i = p * 2; i <= max_val; i += p)``                ``prime[i] = ``false``;``        ``}``    ``}` `    ``// Find all primes in arr[]``    ``int` `count = 0;``    ``for` `(``int` `i = 0; i < n; i++)``        ``if` `(prime[arr[i]])``            ``count++;` `    ``return` `count;``}` `// Function to generate the prefix array``void` `getPrefixArray(``int` `arr[], ``int` `n, ``int` `pre[])``{` `    ``// Fill the prefix array``    ``pre[0] = arr[0];``    ``for` `(``int` `i = 1; i < n; i++) {``        ``pre[i] = pre[i - 1] + arr[i];``    ``}``}` `// Driver code``int` `main()``{` `    ``int` `arr[] = { 1, 4, 8, 4 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);` `    ``// Prefix array of arr[]``    ``int` `pre[n];``    ``getPrefixArray(arr, n, pre);` `    ``// Count of primes in the prefix array``    ``cout << primeCount(pre, n);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `GFG``{``    ` `//returns the max element``static` `int` `max_element(``int` `a[])``{``    ``int` `m = a[``0``];``    ``for``(``int` `i = ``0``; i < a.length; i++)``        ``m = Math.max(a[i], m);``    ` `    ``return` `m;``}` `// Function to return the count of primes``// in the given array``static` `int` `primeCount(``int` `arr[], ``int` `n)``{``    ``// Find maximum value in the array``    ``int` `max_val = max_element(arr);` `    ``// USE SIEVE TO FIND ALL PRIME NUMBERS LESS``    ``// THAN OR EQUAL TO max_val``    ``// Create a boolean array "prime[0..n]". A``    ``// value in prime[i] will finally be false``    ``// if i is Not a prime, else true.``    ``boolean` `prime[] = ``new` `boolean``[max_val + ``1``];``    ``for` `(``int` `p = ``0``; p <= max_val; p++)``        ``prime[p] = ``true``;` `    ``// Remaining part of SIEVE``    ``prime[``0``] = ``false``;``    ``prime[``1``] = ``false``;``    ``for` `(``int` `p = ``2``; p * p <= max_val; p++)``    ``{` `        ``// If prime[p] is not changed, then``        ``// it is a prime``        ``if` `(prime[p] == ``true``)``        ``{` `            ``// Update all multiples of p``            ``for` `(``int` `i = p * ``2``; i <= max_val; i += p)``                ``prime[i] = ``false``;``        ``}``    ``}` `    ``// Find all primes in arr[]``    ``int` `count = ``0``;``    ``for` `(``int` `i = ``0``; i < n; i++)``        ``if` `(prime[arr[i]])``            ``count++;` `    ``return` `count;``}` `// Function to generate the prefix array``static` `int``[] getPrefixArray(``int` `arr[], ``int` `n, ``int` `pre[])``{` `    ``// Fill the prefix array``    ``pre[``0``] = arr[``0``];``    ``for` `(``int` `i = ``1``; i < n; i++)``    ``{``        ``pre[i] = pre[i - ``1``] + arr[i];``    ``}``    ``return` `pre;``}` `// Driver code``public` `static` `void` `main(String args[])``{` `    ``int` `arr[] = { ``1``, ``4``, ``8``, ``4` `};``    ``int` `n = arr.length;` `    ``// Prefix array of arr[]``    ``int` `pre[]=``new` `int``[n];``    ``pre=getPrefixArray(arr, n, pre);` `    ``// Count of primes in the prefix array``    ``System.out.println(primeCount(pre, n));` `}``}` `// This code is contributed by Arnab Kundu`

## Python3

 `# Python3 implementation of the approach` `# Function to return the count``# of primes in the given array``def` `primeCount(arr, n):`` ` `    ``# Find maximum value in the array``    ``max_val ``=` `max``(arr)` `    ``# USE SIEVE TO FIND ALL PRIME NUMBERS LESS``    ``# THAN OR EQUAL TO max_val``    ``# Create a boolean array "prime[0..n]". A``    ``# value in prime[i] will finally be False``    ``# if i is Not a prime, else True.``    ``prime ``=` `[``True``] ``*` `(max_val``+``1``)` `    ``# Remaining part of SIEVE``    ``prime[``0``] ``=` `prime[``1``] ``=` `False``    ``p ``=` `2``    ``while` `p ``*` `p <``=` `max_val: ` `        ``# If prime[p] is not changed,``        ``# then it is a prime``        ``if` `prime[p] ``=``=` `True``: ` `            ``# Update all multiples of p``            ``for` `i ``in` `range``(p ``*` `2``, max_val``+``1``, p):``                ``prime[i] ``=` `False``                ` `        ``p ``+``=` `1``         ` `    ``# Find all primes in arr[]``    ``count ``=` `0``    ``for` `i ``in` `range``(``0``, n):``        ``if` `prime[arr[i]]:``            ``count ``+``=` `1` `    ``return` `count`` ` `# Function to generate the prefix array``def` `getPrefixArray(arr, n, pre):`` ` `    ``# Fill the prefix array``    ``pre[``0``] ``=` `arr[``0``]``    ``for` `i ``in` `range``(``1``, n): ``        ``pre[i] ``=` `pre[i ``-` `1``] ``+` `arr[i]` `# Driver code``if` `__name__ ``=``=` `"__main__"``:`` ` `    ``arr ``=` `[``1``, ``4``, ``8``, ``4``] ``    ``n ``=` `len``(arr)` `    ``# Prefix array of arr[]``    ``pre ``=` `[``None``] ``*` `n``    ``getPrefixArray(arr, n, pre)` `    ``# Count of primes in the prefix array``    ``print``(primeCount(pre, n))` `# This code is contributed by Rituraj Jain`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ` `// returns the max element``static` `int` `max_element(``int``[] a)``{``    ``int` `m = a[0];``    ``for``(``int` `i = 0; i < a.Length; i++)``        ``m = Math.Max(a[i], m);``    ` `    ``return` `m;``}` `// Function to return the count of primes``// in the given array``static` `int` `primeCount(``int``[] arr, ``int` `n)``{``    ``// Find maximum value in the array``    ``int` `max_val = max_element(arr);` `    ``// USE SIEVE TO FIND ALL PRIME NUMBERS LESS``    ``// THAN OR EQUAL TO max_val``    ``// Create a bool array "prime[0..n]". A``    ``// value in prime[i] will finally be false``    ``// if i is Not a prime, else true.``    ``bool``[] prime = ``new` `bool``[max_val + 1];``    ``for` `(``int` `p = 0; p <= max_val; p++)``        ``prime[p] = ``true``;` `    ``// Remaining part of SIEVE``    ``prime[0] = ``false``;``    ``prime[1] = ``false``;``    ``for` `(``int` `p = 2; p * p <= max_val; p++)``    ``{` `        ``// If prime[p] is not changed, then``        ``// it is a prime``        ``if` `(prime[p] == ``true``)``        ``{` `            ``// Update all multiples of p``            ``for` `(``int` `i = p * 2; i <= max_val; i += p)``                ``prime[i] = ``false``;``        ``}``    ``}` `    ``// Find all primes in arr[]``    ``int` `count = 0;``    ``for` `(``int` `i = 0; i < n; i++)``        ``if` `(prime[arr[i]])``            ``count++;` `    ``return` `count;``}` `// Function to generate the prefix array``static` `int``[] getPrefixArray(``int``[] arr, ``int` `n, ``int``[] pre)``{` `    ``// Fill the prefix array``    ``pre[0] = arr[0];``    ``for` `(``int` `i = 1; i < n; i++)``    ``{``        ``pre[i] = pre[i - 1] + arr[i];``    ``}``    ``return` `pre;``}` `// Driver code``public` `static` `void` `Main()``{` `    ``int``[] arr = { 1, 4, 8, 4 };``    ``int` `n = arr.Length;` `    ``// Prefix array of arr[]``    ``int``[] pre = ``new` `int``[n];``    ``pre = getPrefixArray(arr, n, pre);` `    ``// Count of primes in the prefix array``    ``Console.Write(primeCount(pre, n));` `}``}` `// This code is contributed by ChitraNayal`

## PHP

 ``

## Javascript

 ``
Output:
`3`

My Personal Notes arrow_drop_up