Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose weight is a perfect Square.

**Examples:**

Input:

Output:3

Only the weights of nodes 1, 4 and 5 are perfect squares.

**Approach:** Perform dfs on the tree and for every node, check if it’s weight is a perfect square or not.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `int` `ans = 0; ` ` ` `vector<` `int` `> graph[100]; ` `vector<` `int` `> weight(100); ` ` ` `// Function that returns true ` `// if n is a perfect square ` `bool` `isPerfectSquare(` `int` `n) ` `{ ` ` ` `double` `x = ` `sqrt` `(n); ` ` ` `if` `(` `floor` `(x) != ` `ceil` `(x)) ` ` ` `return` `false` `; ` ` ` `return` `true` `; ` `} ` ` ` `// Function to perform dfs ` `void` `dfs(` `int` `node, ` `int` `parent) ` `{ ` ` ` `// If weight of the current node ` ` ` `// is a perfect square ` ` ` `if` `(isPerfectSquare(weight[node])) ` ` ` `ans += 1; ` ` ` ` ` `for` `(` `int` `to : graph[node]) { ` ` ` `if` `(to == parent) ` ` ` `continue` `; ` ` ` `dfs(to, node); ` ` ` `} ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `x = 15; ` ` ` ` ` `// Weights of the node ` ` ` `weight[1] = 4; ` ` ` `weight[2] = 5; ` ` ` `weight[3] = 3; ` ` ` `weight[4] = 25; ` ` ` `weight[5] = 16; ` ` ` `weight[6] = 30; ` ` ` ` ` `// Edges of the tree ` ` ` `graph[1].push_back(2); ` ` ` `graph[2].push_back(3); ` ` ` `graph[2].push_back(4); ` ` ` `graph[1].push_back(5); ` ` ` `graph[5].push_back(6); ` ` ` ` ` `dfs(1, 1); ` ` ` ` ` `cout << ans; ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java implementation of the approach ` `import` `java.util.*; ` ` ` `class` `GFG{ ` ` ` `static` `int` `ans = ` `0` `; ` ` ` `static` `Vector<Integer>[] graph = ` `new` `Vector[` `100` `]; ` `static` `int` `[] weight = ` `new` `int` `[` `100` `]; ` ` ` `// Function that returns true ` `// if n is a perfect square ` `static` `boolean` `isPerfectSquare(` `int` `n) ` `{ ` ` ` `double` `x = Math.sqrt(n); ` ` ` `if` `(Math.floor(x) != Math.ceil(x)) ` ` ` `return` `false` `; ` ` ` `return` `true` `; ` `} ` ` ` `// Function to perform dfs ` `static` `void` `dfs(` `int` `node, ` `int` `parent) ` `{ ` ` ` `// If weight of the current node ` ` ` `// is a perfect square ` ` ` `if` `(isPerfectSquare(weight[node])) ` ` ` `ans += ` `1` `; ` ` ` ` ` `for` `(` `int` `to : graph[node]) { ` ` ` `if` `(to == parent) ` ` ` `continue` `; ` ` ` `dfs(to, node); ` ` ` `} ` `} ` ` ` `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` ` ` `int` `x = ` `15` `; ` ` ` `for` `(` `int` `i = ` `0` `; i < ` `100` `; i++) ` ` ` `graph[i] = ` `new` `Vector<>(); ` ` ` ` ` `// Weights of the node ` ` ` `weight[` `1` `] = ` `4` `; ` ` ` `weight[` `2` `] = ` `5` `; ` ` ` `weight[` `3` `] = ` `3` `; ` ` ` `weight[` `4` `] = ` `25` `; ` ` ` `weight[` `5` `] = ` `16` `; ` ` ` `weight[` `6` `] = ` `30` `; ` ` ` ` ` `// Edges of the tree ` ` ` `graph[` `1` `].add(` `2` `); ` ` ` `graph[` `2` `].add(` `3` `); ` ` ` `graph[` `2` `].add(` `4` `); ` ` ` `graph[` `1` `].add(` `5` `); ` ` ` `graph[` `5` `].add(` `6` `); ` ` ` ` ` `dfs(` `1` `, ` `1` `); ` ` ` ` ` `System.out.print(ans); ` `} ` `} ` ` ` `// This code is contributed by Rajput-Ji ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of the approach ` `from` `math ` `import` `*` `ans ` `=` `0` ` ` `graph ` `=` `[[] ` `for` `i ` `in` `range` `(` `100` `)] ` `weight ` `=` `[` `0` `] ` `*` `100` ` ` `# Function that returns true ` `# if n is a perfect square ` `def` `isPerfectSquare(n): ` ` ` `x ` `=` `sqrt(n) ` ` ` `if` `(floor(x) !` `=` `ceil(x)): ` ` ` `return` `False` ` ` `return` `True` ` ` `# Function to perform dfs ` `def` `dfs(node, parent): ` ` ` `global` `ans ` ` ` ` ` `# If weight of the current node ` ` ` `# is a perfect square ` ` ` `if` `(isPerfectSquare(weight[node])): ` ` ` `ans ` `+` `=` `1` `; ` ` ` ` ` `for` `to ` `in` `graph[node]: ` ` ` `if` `(to ` `=` `=` `parent): ` ` ` `continue` ` ` `dfs(to, node) ` ` ` `# Driver code ` ` ` `x ` `=` `15` ` ` `# Weights of the node ` `weight[` `1` `] ` `=` `4` `weight[` `2` `] ` `=` `5` `weight[` `3` `] ` `=` `3` `weight[` `4` `] ` `=` `25` `weight[` `5` `] ` `=` `16` `weight[` `6` `] ` `=` `30` ` ` `# Edges of the tree ` `graph[` `1` `].append(` `2` `) ` `graph[` `2` `].append(` `3` `) ` `graph[` `2` `].append(` `4` `) ` `graph[` `1` `].append(` `5` `) ` `graph[` `5` `].append(` `6` `) ` ` ` `dfs(` `1` `, ` `1` `) ` `print` `(ans) ` ` ` `# This code is contributed by SHUBHAMSINGH10 ` |

*chevron_right*

*filter_none*

## C#

`// C# program for the above approach ` `using` `System; ` `using` `System.Collections; ` `using` `System.Collections.Generic; ` `using` `System.Text; ` ` ` `class` `GFG{ ` ` ` `static` `int` `ans = 0; ` ` ` `static` `ArrayList[] graph = ` `new` `ArrayList[100]; ` `static` `int` `[] weight = ` `new` `int` `[100]; ` ` ` `// Function that returns true ` `// if n is a perfect square ` `static` `bool` `isPerfectSquare(` `int` `n) ` `{ ` ` ` `double` `x = Math.Sqrt(n); ` ` ` ` ` `if` `(Math.Floor(x) != Math.Ceiling(x)) ` ` ` `return` `false` `; ` ` ` ` ` `return` `true` `; ` `} ` ` ` `// Function to perform dfs ` `static` `void` `dfs(` `int` `node, ` `int` `parent) ` `{ ` ` ` ` ` `// If weight of the current node ` ` ` `// is a perfect square ` ` ` `if` `(isPerfectSquare(weight[node])) ` ` ` `ans += 1; ` ` ` ` ` `foreach` `(` `int` `to ` `in` `graph[node]) ` ` ` `{ ` ` ` `if` `(to == parent) ` ` ` `continue` `; ` ` ` ` ` `dfs(to, node); ` ` ` `} ` `} ` ` ` `// Driver Code ` `public` `static` `void` `Main(` `string` `[] args) ` `{ ` ` ` `//int x = 15; ` ` ` `for` `(` `int` `i = 0; i < 100; i++) ` ` ` `graph[i] = ` `new` `ArrayList(); ` ` ` ` ` `// Weights of the node ` ` ` `weight[1] = 4; ` ` ` `weight[2] = 5; ` ` ` `weight[3] = 3; ` ` ` `weight[4] = 25; ` ` ` `weight[5] = 16; ` ` ` `weight[6] = 30; ` ` ` ` ` `// Edges of the tree ` ` ` `graph[1].Add(2); ` ` ` `graph[2].Add(3); ` ` ` `graph[2].Add(4); ` ` ` `graph[1].Add(5); ` ` ` `graph[5].Add(6); ` ` ` ` ` `dfs(1, 1); ` ` ` ` ` `Console.Write(ans); ` `} ` `} ` ` ` `// This code is contributed by rutvik_56 ` |

*chevron_right*

*filter_none*

**Output:**

3

**Complexity Analysis:**

**Time Complexity:**O(N*logV) where V is the maximum weight of a node in the tree.

In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) for N nodes in the tree. Also, while processing every node, in order to check if the node value is a perfect square or not, the inbuilt sqrt(V), is being called where V is the weight of the node and this function has a complexity of O(log V). Hence for every node, there is an added complexity of O(log V). Therefore, the total time complexity is O(N*logV).**Auxiliary Space:**O(1).

Any extra space is not required, so the space complexity is constant.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Count the nodes in the given Tree whose weight is a Perfect Number
- Count number of paths whose weight is exactly X and has at-least one edge of weight M
- Count the nodes in the given tree whose weight is even
- Count the nodes in the given tree whose weight is a power of two
- Count the nodes in the given tree whose weight is even parity
- Count the nodes in the given tree whose sum of digits of weight is odd
- Count the nodes of the given tree whose weight has X as a factor
- Count nodes in the given tree whose weight is a fibonacci number
- Count the nodes in the given tree whose weight is a powerful number
- Count the nodes in the given tree whose weight is prime
- Count of all prime weight nodes between given nodes in the given Tree
- Count of Nodes which has Prime Digit sum weight in a Tree
- Query to find the maximum and minimum weight between two nodes in the given tree using LCA.
- Queries to find the Minimum Weight from a Subtree of atmost D-distant Nodes from Node X
- Permutation of numbers such that sum of two consecutive numbers is a perfect square
- Count all pairs of adjacent nodes whose XOR is an odd number
- Count the nodes whose sum with X is a Fibonacci number
- Count the nodes of the given tree whose weighted string is a palindrome
- Count the nodes of the tree whose weighted string contains a vowel
- Count the nodes of a tree whose weighted string does not contain any duplicate characters

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.