Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count the nodes of the tree whose weighted string contains a vowel

  • Last Updated : 04 Jun, 2021

Given a tree, and the weights (in the form of strings) of all the nodes, the task is to count the nodes whose weights contain a vowel.

Examples: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: 
 



Output:
Only the strings of the nodes 1 and 5 contain vowels. 

Approach: Perform dfs on the tree and for every node, check if it’s string contains vowels, If yes then increment the count.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int cnt = 0;
 
vector<int> graph[100];
vector<string> weight(100);
 
// Function that returns true
// if the string contains any vowel
bool containsVowel(string str)
{
    for (int i = 0; i < str.length(); i++)
    {
        char ch = tolower(str[i]);
        if (ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o'
            || ch == 'u')
            return true;
    }
    return false;
}
 
// Function to perform dfs
void dfs(int node, int parent)
{
 
    // Weight of the current node
    string x = weight[node];
 
    // If the weight contains any vowel
    if (containsVowel(x))
        cnt += 1;
 
    for (int to : graph[node])
    {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
 
    // Weights of the node
    weight[1] = "geek";
    weight[2] = "btch";
    weight[3] = "bcb";
    weight[4] = "by";
    weight[5] = "mon";
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    // Function call
    dfs(1, 1);
 
    cout << cnt;
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG {
 
    static int cnt = 0;
 
    static Vector<Vector<Integer> > graph
        = new Vector<Vector<Integer> >();
    static Vector<String> weight = new Vector<String>();
 
    // Function that returns true
    // if the String contains any vowel
    static boolean containsVowel(String str)
    {
        for (int i = 0; i < str.length(); i++)
        {
            char ch = str.charAt(i);
            if (ch < 97)
                ch += 32;
            if (ch == 'a' || ch == 'e' || ch == 'i'
                || ch == 'o' || ch == 'u')
                return true;
        }
        return false;
    }
 
    // Function to perform dfs
    static void dfs(int node, int parent)
    {
 
        // Weight of the current node
        String x = weight.get(node);
 
        // If the weight contains any vowel
        if (containsVowel(x))
            cnt += 1;
 
        for (int i = 0; i < graph.get(node).size(); i++)
        {
            if (graph.get(node).get(i) == parent)
                continue;
            dfs(graph.get(node).get(i), node);
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
 
        // Weights of the node
        weight.add("");
        weight.add("geek");
        weight.add("btch");
        weight.add("bcb");
        weight.add("by");
        weight.add("mon");
 
        for (int i = 0; i < 100; i++)
            graph.add(new Vector<Integer>());
 
        // Edges of the tree
        graph.get(1).add(2);
        graph.get(2).add(3);
        graph.get(2).add(4);
        graph.get(1).add(5);
 
        // Function call
        dfs(1, 1);
 
        System.out.println(cnt);
    }
}
 
// This code is contributed by andrew1234

Python3




# Python3 implementation of the approach
cnt = 0
 
graph = [[] for i in range(100)]
weight = [0 for i in range(100)]
 
# Function that returns True
# if the contains any vowel
 
 
def containsVowel(Str):
 
    for i in range(len(Str)):
        ch = Str[i]
        if (ch == 'a' or ch == 'e' or ch == 'i' or
                ch == 'o' or ch == 'u'):
            return True
 
    return False
 
 
# Function to perform dfs
def dfs(node, parent):
    global cnt
 
    # Weight of the current node
    x = weight[node]
 
    # If the weight contains any vowel
    if (containsVowel(x)):
        cnt += 1
 
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
 
# Driver code
 
 
# Weights of the node
weight[1] = "geek"
weight[2] = "btch"
weight[3] = "bcb"
weight[4] = "by"
weight[5] = "mon"
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
 
# Function call
dfs(1, 1)
 
print(cnt)
 
# This code is contributed by mohit kumar 29

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG {
 
    static int cnt = 0;
 
    static List<List<int> > graph = new List<List<int> >();
    static List<String> weight = new List<String>();
 
    // Function that returns true
    // if the String contains any vowel
    static Boolean containsVowel(String str)
    {
        for (int i = 0; i < str.Length; i++)
        {
            char ch = str[i];
            if (ch < 97)
                ch += (char)32;
            if (ch == 'a' || ch == 'e' || ch == 'i'
                || ch == 'o' || ch == 'u')
                return true;
        }
        return false;
    }
 
    // Function to perform dfs
    static void dfs(int node, int parent)
    {
 
        // Weight of the current node
        String x = weight[node];
 
        // If the weight contains any vowel
        if (containsVowel(x))
            cnt += 1;
 
        for (int i = 0; i < graph[node].Count; i++)
        {
            if (graph[node][i] == parent)
                continue;
            dfs(graph[node][i], node);
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
 
        // Weights of the node
        weight.Add("");
        weight.Add("geek");
        weight.Add("btch");
        weight.Add("bcb");
        weight.Add("by");
        weight.Add("mon");
 
        for (int i = 0; i < 100; i++)
            graph.Add(new List<int>());
 
        // Edges of the tree
        graph[1].Add(2);
        graph[2].Add(3);
        graph[2].Add(4);
        graph[1].Add(5);
 
        // Function call
        dfs(1, 1);
 
        Console.WriteLine(cnt);
    }
}
 
// This code has been contributed by 29AjayKumar

Javascript




<script>
 
// Javascript implementation of the approach
let cnt = 0;
let graph = [];
let weight = [];
 
// Function that returns true
// if the String contains any vowel
function containsVowel(str)
{
    for(let i = 0; i < str.length; i++)
    {
        let ch = str[i];
        if (ch < 97)
            ch += 32;
        if (ch == 'a' || ch == 'e' || ch == 'i' ||
            ch == 'o' || ch == 'u')
            return true;
    }
    return false;
}
 
// Function to perform dfs
function dfs(node, parent)
{
     
    // Weight of the current node
    let x = weight[node];
 
    // If the weight contains any vowel
    if (containsVowel(x))
        cnt += 1;
 
    for(let i = 0; i < graph[node].length; i++)
    {
        if (graph[node][i] == parent)
            continue;
             
        dfs(graph[node][i], node);
    }
}
 
// Driver code
 
// Weights of the node
weight.push("");
weight.push("geek");
weight.push("btch");
weight.push("bcb");
weight.push("by");
weight.push("mon");
 
for(let i = 0; i < 100; i++)
    graph.push([]);
 
// Edges of the tree
graph[1].push(2);
graph[2].push(3);
graph[2].push(4);
graph[1].push(5);
 
// Function call
dfs(1, 1);
 
document.write(cnt);
 
// This code is contributed by patel2127
 
</script>
Output
2

Complexity Analysis:

Time Complexity: O(N*Len) where Len is the maximum length of the weighted string of a node in the given tree.
In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) for N nodes in the tree. Also, processing of every node involves traversing the weighted string of that node once, thus adding a complexity of O(Len) where Len is the length of the weighted string. Therefore, the total time complexity is O(N*Len).

Auxiliary Space: O(1).
Any extra space is not required, so the space complexity is constant.




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!