Count the nodes of the tree which make a pangram when concatenated with the sub-tree nodes

Given a tree, and the weights (in the form of strings) of all the nodes, the task is to count the nodes whose weighted string when concatenated with the strings of the sub-tree nodes becomes a pangram. 
Pangram: A pangram is a sentence containing every letter of the English Alphabet.

Examples: 
 

Input: 
 

Output:
Only the weighted string of sub-tree of node 1 makes the pangram. 



Approach: Perform dfs on the tree and update the weight of every node such that it stores its weight concatenated with the weights of the sub-tree nodes. Then, count the nodes whose updated weighted string forms a pangram.

Below is the implementation of the above approach: 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
vector<int> graph[100];
vector<string> weight(100);
 
// Function that returns if the
// string x is a pangram
bool Pangram(string x)
{
    map<char, int> mp;
    int n = x.size();
 
    for (int i = 0; i < n; i++)
        mp[x[i]]++;
    if (mp.size() == 26)
        return true;
    else
        return false;
}
 
// Function to return the count of nodes
// which make pangram with the
// sub-tree nodes
int countTotalPangram(int n)
{
    int cnt = 0;
    for (int i = 1; i <= n; i++)
        if (Pangram(weight[i]))
            cnt++;
    return cnt;
}
 
// Function to perform dfs and update the nodes
// such that weight[i] will store the weight[i]
// concatenated with the weights of
// all the nodes in the sub-tree
void dfs(int node, int parent)
{
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
        weight[node] += weight[to];
    }
}
 
// Driver code
int main()
{
    int n = 6;
 
    // Weights of the nodes
    weight[1] = "abcde";
    weight[2] = "fghijkl";
    weight[3] = "abcdefg";
    weight[4] = "mnopqr";
    weight[5] = "stuvwxy";
    weight[6] = "zabcdef";
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
    graph[5].push_back(6);
 
    dfs(1, 1);
 
    cout << countTotalPangram(n);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
 
class GFG{
     
@SuppressWarnings("unchecked")
static Vector<Integer> []graph = new Vector[100];
static String []weight = new String[100];
 
// Function that returns if the
// String x is a pangram
static boolean Pangram(String x)
{
    HashMap<Character, Integer> mp = new HashMap<>();
    int n = x.length();
 
    for(int i = 0 ; i < n; i++)
    {
        if (mp.containsKey(x.charAt(i)))
        {
            mp.put(x.charAt(i),
            mp.get(x.charAt(i)) + 1);
        }
        else
        {
            mp.put(x.charAt(i), 1);
        }
    }
    if (mp.size() == 26)
        return true;
    else
        return false;
}
 
// Function to return the count of nodes
// which make pangram with the
// sub-tree nodes
static int countTotalPangram(int n)
{
    int cnt = 0;
    for(int i = 1; i <= n; i++)
        if (Pangram(weight[i]))
            cnt++;
             
    return cnt;
}
 
// Function to perform dfs and update the nodes
// such that weight[i] will store the weight[i]
// concatenated with the weights of
// all the nodes in the sub-tree
static void dfs(int node, int parent)
{
    for(int to : graph[node])
    {
        if (to == parent)
            continue;
             
        dfs(to, node);
        weight[node] += weight[to];
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 6;
 
    // Weights of the nodes
    weight[1] = "abcde";
    weight[2] = "fghijkl";
    weight[3] = "abcdefg";
    weight[4] = "mnopqr";
    weight[5] = "stuvwxy";
    weight[6] = "zabcdef";
 
    for(int i = 0; i < graph.length; i++)
        graph[i] = new Vector<Integer>();
         
    // Edges of the tree
    graph[1].add(2);
    graph[2].add(3);
    graph[2].add(4);
    graph[1].add(5);
    graph[5].add(6);
 
    dfs(1, 1);
 
    System.out.print(countTotalPangram(n));
}
}
 
// This code is contributed by Amit Katiyar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function that returns if the
# string x is a pangram
def Pangram(x):
    mp = {}
    n = len(x)
    for i in range(n):
        if x[i] not in mp:
            mp[x[i]] = 0
        mp[x[i]] += 1
    if (len(mp)== 26):
        return True
    else:
        return False
 
# Function to return the count of nodes
# which make pangram with the
# sub-tree nodes
def countTotalPangram(n):
    cnt = 0
    for i in range(1, n + 1):
        if (Pangram(weight[i])):
            cnt += 1
    return cnt
 
# Function to perform dfs and update the nodes
# such that weight[i] will store the weight[i]
# concatenated with the weights of
# all the nodes in the sub-tree
def dfs(node, parent):
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
        weight[node] += weight[to]
 
# Driver code
n = 6
 
# Weights of the nodes
weight[1] = "abcde"
weight[2] = "fghijkl"
weight[3] = "abcdefg"
weight[4] = "mnopqr"
weight[5] = "stuvwxy"
weight[6] = "zabcdef"
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
graph[5].append(6)
 
dfs(1, 1)
print(countTotalPangram(n))
 
# This code is contributed by SHUBHAMSINGH10
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of
// the above approach
using System;
using System.Collections.Generic;
class GFG{   
 
static List<int> []graph =
            new List<int>[100];
static String []weight =
                new String[100];
 
// Function that returns if the
// String x is a pangram
static bool Pangram(String x)
{
  Dictionary<char,
             int> mp = new Dictionary<char,
                                      int>();
  int n = x.Length;
 
  for(int i = 0 ; i < n; i++)
  {
    if (mp.ContainsKey(x[i]))
    {
      mp[x[i]] = mp[x[i]] + 1;
    }
    else
    {
      mp.Add(x[i], 1);
    }
  }
  if (mp.Count == 26)
    return true;
  else
    return false;
}
 
// Function to return the
// count of nodes which
// make pangram with the
// sub-tree nodes
static int countTotalPangram(int n)
{
  int cnt = 0;
  for(int i = 1; i <= n; i++)
    if (Pangram(weight[i]))
      cnt++;
 
  return cnt;
}
 
// Function to perform dfs and
// update the nodes such that
// weight[i] will store the weight[i]
// concatenated with the weights of
// all the nodes in the sub-tree
static void dfs(int node, int parent)
{
  foreach(int to in graph[node])
  {
    if (to == parent)
      continue;
 
    dfs(to, node);
    weight[node] += weight[to];
  }
}
 
// Driver code
public static void Main(String[] args)
{
  int n = 6;
 
  // Weights of the nodes
  weight[1] = "abcde";
  weight[2] = "fghijkl";
  weight[3] = "abcdefg";
  weight[4] = "mnopqr";
  weight[5] = "stuvwxy";
  weight[6] = "zabcdef";
 
  for(int i = 0;
          i < graph.Length; i++)
    graph[i] = new List<int>();
 
  // Edges of the tree
  graph[1].Add(2);
  graph[2].Add(3);
  graph[2].Add(4);
  graph[1].Add(5);
  graph[5].Add(6);
 
  dfs(1, 1);
  Console.Write(countTotalPangram(n));
}
}
 
// This code is contributed by shikhasingrajput
chevron_right

Output: 
1





 

Complexity Analysis: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Data science |Machine learning|Programming facebook -https//wwwfacebookcom/profilephpid=100002787011326

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :