Skip to content
Related Articles

Related Articles

Count the nodes in the given tree whose weight is prime
  • Last Updated : 20 Apr, 2021

Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose weight is prime.
Examples: 
 

Input: 
 

Output:
Only the weights of the nodes 1 and 3 are prime. 
 

 



Approach: Perform dfs on the tree and for every node, check if it’s weight is prime or not.
Below is the implementation of above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int ans = 0;
 
vector<int> graph[100];
vector<int> weight(100);
 
// Function that returns true
// if n is prime
bool isprime(int n)
{
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0)
            return false;
    return true;
}
 
// Function to perform dfs
void dfs(int node, int parent)
{
    // If weight of node is prime or not
    if (isprime(weight[node]))
        ans += 1;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
 
    cout << ans;
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
  
static int ans = 0;
 
static Vector<Integer>[] graph = new Vector[100];
static int[] weight = new int[100];
  
// Function that returns true
// if n is prime
static boolean isprime(int n)
{
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0)
            return false;
    return true;
}
  
// Function to perform dfs
static void dfs(int node, int parent)
{
    // If weight of node is prime or not
    if (isprime(weight[node]))
        ans += 1;
  
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
  
// Driver code
public static void main(String[] args)
{
    for (int i = 0; i < 100; i++)
        graph[i] = new Vector<>();
     
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
  
    // Edges of the tree
    graph[1].add(2);
    graph[2].add(3);
    graph[2].add(4);
    graph[1].add(5);
  
    dfs(1, 1);
  
    System.out.print(ans);
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
ans = 0
 
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function that returns true
# if n is prime
def isprime(n):
    i = 2
    while(i * i <= n):
        if (n % i == 0):
            return False
        i += 1
    return True
 
# Function to perform dfs
def dfs(node, parent):
    global ans
     
    # If weight of the current node is even
    if (isprime(weight[node])):
        ans += 1;
     
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
 
# Driver code
 
# Weights of the node
weight[1] = 5
weight[2] = 10
weight[3] = 11
weight[4] = 8
weight[5] = 6
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
 
dfs(1, 1)
print(ans)
 
# This code is contributed by SHUBHAMSINGH10

C#




// C# implementation of the approach
using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
 
class GFG{
     
static int ans = 0;
static ArrayList[] graph = new ArrayList[100];
static int[] weight = new int[100];
 
// Function that returns true
// if n is prime
static bool isprime(int n)
{
    for(int i = 2; i * i <= n; i++)
        if (n % i == 0)
            return false;
             
    return true;
}
 
// Function to perform dfs
static void dfs(int node, int parent)
{
     
    // If weight of node is prime or not
    if (isprime(weight[node]))
        ans += 1;
 
    foreach(int to in graph[node])
    {
        if (to == parent)
            continue;
             
        dfs(to, node);
    }
}
     
// Driver Code
public static void Main(string[] args)
{
    for(int i = 0; i < 100; i++)
        graph[i] = new ArrayList();
     
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);
 
    dfs(1, 1);
 
    Console.Write(ans);
}
}
 
// This code is contributed by rutvik_56

Javascript




<script>
 
// Javascript implementation of the approach
     
    let ans=0;
     
    let graph = new Array(100);
     
     
    let weight = new Array(100);
    for(let i=0;i<100;i++)
    {
        graph[i]=[];
        weight[i]=0;
    }
     
    // Function that returns true
    // if n is prime
    function isprime(n)
    {
        for (let i = 2; i * i <= n; i++)
            if (n % i == 0)
                return false;
        return true;
    }
     
    // Function to perform dfs
    function dfs(node,parent)
    {
         // If weight of node is prime or not
        if (isprime(weight[node]))
            ans += 1;
        for(let to=0;to<graph[node].length;to++)
        {
            if(graph[node][to] == parent)
                continue
            dfs(graph[node][to], node);  
        }
         
    }
     
    // Driver code
     
    x = 15;
   
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
       
   
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
     
     
    dfs(1, 1);
   
    document.write( ans);
     
    // This code is contributed by unknown2108
     
</script>
Output: 
2

 

Complexity Analysis: 
 

  • Time Complexity: O(N*sqrt(V)), where V is the maximum weight of a node in the given tree. 
    In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) when there are N total nodes in the tree. Also, while processing every node, in order to check if the node value is prime or not, a loop up to sqrt(V) is being run, where V is the weight of the node. Hence for every node, there is an added complexity of O(sqrt(V)). Therefore, the time complexity is O(N*sqrt(V)).
  • Auxiliary Space: O(1). 
    Any extra space is not required, so the space complexity is constant.

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up
Recommended Articles
Page :