Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose sum of digits of weights is odd.

**Examples:**

Input:

Output:3

Node 1: digitSum(144) = 1 + 4 + 4 = 9

Node 2: digitSum(1234) = 1 + 2 + 3 + 4 = 10

Node 3: digitSum(21) = 2 + 1 = 3

Node 4: digitSum(5) = 5

Node 5: digitSum(77) = 7 + 7 = 14

Only the sum of digits of the weights of nodes 1, 3 and 4 are odd.

**Approach:** Perform dfs on the tree and for every node, check if the sum of the digits of its weight is odd. If yes then increment the count.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `int` `ans = 0; ` ` ` `vector<` `int` `> graph[100]; ` `vector<` `int` `> weight(100); ` ` ` `// Function to return the ` `// sum of the digits of n ` `int` `digitSum(` `int` `n) ` `{ ` ` ` `int` `sum = 0; ` ` ` `while` `(n) { ` ` ` `sum += n % 10; ` ` ` `n = n / 10; ` ` ` `} ` ` ` `return` `sum; ` `} ` ` ` `// Function to perform dfs ` `void` `dfs(` `int` `node, ` `int` `parent) ` `{ ` ` ` `// If sum of the digits of current node's ` ` ` `// weight is odd then increment ans ` ` ` `int` `sum = digitSum(weight[node]); ` ` ` `if` `(sum % 2 == 1) ` ` ` `ans += 1; ` ` ` ` ` `for` `(` `int` `to : graph[node]) { ` ` ` `if` `(to == parent) ` ` ` `continue` `; ` ` ` `dfs(to, node); ` ` ` `} ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` ` ` `// Weights of the node ` ` ` `weight[1] = 144; ` ` ` `weight[2] = 1234; ` ` ` `weight[3] = 21; ` ` ` `weight[4] = 5; ` ` ` `weight[5] = 77; ` ` ` ` ` `// Edges of the tree ` ` ` `graph[1].push_back(2); ` ` ` `graph[2].push_back(3); ` ` ` `graph[2].push_back(4); ` ` ` `graph[1].push_back(5); ` ` ` ` ` `dfs(1, 1); ` ` ` ` ` `cout << ans; ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java implementation of the approach ` `import` `java.util.*; ` ` ` `class` `GFG ` `{ ` ` ` `static` `int` `ans = ` `0` `; ` ` ` ` ` `static` `Vector<Integer>[] graph = ` `new` `Vector[` `100` `]; ` ` ` `static` `Integer[] weight = ` `new` `Integer[` `100` `]; ` ` ` ` ` `// Function to return the ` ` ` `// sum of the digits of n ` ` ` `static` `int` `digitSum(` `int` `n) ` ` ` `{ ` ` ` `int` `sum = ` `0` `; ` ` ` `while` `(n > ` `0` `) ` ` ` `{ ` ` ` `sum += n % ` `10` `; ` ` ` `n = n / ` `10` `; ` ` ` `} ` ` ` `return` `sum; ` ` ` `} ` ` ` ` ` `// Function to perform dfs ` ` ` `static` `void` `dfs(` `int` `node, ` `int` `parent) ` ` ` `{ ` ` ` ` ` `// If sum of the digits of current node's ` ` ` `// weight is odd then increment ans ` ` ` `int` `sum = digitSum(weight[node]); ` ` ` `if` `(sum % ` `2` `== ` `1` `) ` ` ` `ans += ` `1` `; ` ` ` ` ` `for` `(` `int` `to : graph[node]) ` ` ` `{ ` ` ` `if` `(to == parent) ` ` ` `continue` `; ` ` ` `dfs(to, node); ` ` ` `} ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` `for` `(` `int` `i = ` `0` `; i < ` `100` `; i++) ` ` ` `graph[i] = ` `new` `Vector<Integer>(); ` ` ` ` ` `// Weights of the node ` ` ` `weight[` `1` `] = ` `144` `; ` ` ` `weight[` `2` `] = ` `1234` `; ` ` ` `weight[` `3` `] = ` `21` `; ` ` ` `weight[` `4` `] = ` `5` `; ` ` ` `weight[` `5` `] = ` `77` `; ` ` ` ` ` `// Edges of the tree ` ` ` `graph[` `1` `].add(` `2` `); ` ` ` `graph[` `2` `].add(` `3` `); ` ` ` `graph[` `2` `].add(` `4` `); ` ` ` `graph[` `1` `].add(` `5` `); ` ` ` ` ` `dfs(` `1` `, ` `1` `); ` ` ` ` ` `System.out.print(ans); ` ` ` `} ` `} ` ` ` `// This code is contributed by Rajput-Ji ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of the approach ` `ans ` `=` `0` ` ` `graph ` `=` `[[] ` `for` `i ` `in` `range` `(` `100` `)] ` `weight ` `=` `[` `0` `] ` `*` `100` ` ` `# Function to return the ` `# sum of the digits of n ` `def` `digitSum(n): ` ` ` `sum` `=` `0` ` ` `while` `(n): ` ` ` `sum` `+` `=` `n ` `%` `10` ` ` `n ` `=` `n ` `/` `/` `10` ` ` `return` `sum` ` ` `# Function to perform dfs ` `def` `dfs(node, parent): ` ` ` `global` `ans ` ` ` ` ` `# If sum of the digits of current node's ` ` ` `# weight is odd then increment ans ` ` ` `sum` `=` `digitSum(weight[node]) ` ` ` `if` `(` `sum` `%` `2` `=` `=` `1` `): ` ` ` `ans ` `+` `=` `1` ` ` ` ` `for` `to ` `in` `graph[node]: ` ` ` `if` `(to ` `=` `=` `parent): ` ` ` `continue` ` ` `dfs(to, node) ` ` ` `# Driver code ` ` ` `# Weights of the node ` `weight[` `1` `] ` `=` `144` `weight[` `2` `] ` `=` `1234` `weight[` `3` `] ` `=` `21` `weight[` `4` `] ` `=` `5` `weight[` `5` `] ` `=` `77` ` ` `# Edges of the tree ` `graph[` `1` `].append(` `2` `) ` `graph[` `2` `].append(` `3` `) ` `graph[` `2` `].append(` `4` `) ` `graph[` `1` `].append(` `5` `) ` ` ` `dfs(` `1` `, ` `1` `) ` `print` `(ans) ` ` ` `# This code is contributed by SHUBHAMSINGH10 ` |

*chevron_right*

*filter_none*

## C#

`// C# implementation of the approach ` `using` `System; ` `using` `System.Collections.Generic; ` ` ` `class` `GFG ` `{ ` ` ` `static` `int` `ans = 0; ` ` ` ` ` `static` `List<` `int` `>[] graph = ` `new` `List<` `int` `>[100]; ` ` ` `static` `int` `[] weight = ` `new` `int` `[100]; ` ` ` ` ` `// Function to return the ` ` ` `// sum of the digits of n ` ` ` `static` `int` `digitSum(` `int` `n) ` ` ` `{ ` ` ` `int` `sum = 0; ` ` ` `while` `(n > 0) ` ` ` `{ ` ` ` `sum += n % 10; ` ` ` `n = n / 10; ` ` ` `} ` ` ` `return` `sum; ` ` ` `} ` ` ` ` ` `// Function to perform dfs ` ` ` `static` `void` `dfs(` `int` `node, ` `int` `parent) ` ` ` `{ ` ` ` ` ` `// If sum of the digits of current node's ` ` ` `// weight is odd then increment ans ` ` ` `int` `sum = digitSum(weight[node]); ` ` ` `if` `(sum % 2 == 1) ` ` ` `ans += 1; ` ` ` ` ` `foreach` `(` `int` `to ` `in` `graph[node]) ` ` ` `{ ` ` ` `if` `(to == parent) ` ` ` `continue` `; ` ` ` `dfs(to, node); ` ` ` `} ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `Main(String[] args) ` ` ` `{ ` ` ` `for` `(` `int` `i = 0; i < 100; i++) ` ` ` `graph[i] = ` `new` `List<` `int` `>(); ` ` ` ` ` `// Weights of the node ` ` ` `weight[1] = 144; ` ` ` `weight[2] = 1234; ` ` ` `weight[3] = 21; ` ` ` `weight[4] = 5; ` ` ` `weight[5] = 77; ` ` ` ` ` `// Edges of the tree ` ` ` `graph[1].Add(2); ` ` ` `graph[2].Add(3); ` ` ` `graph[2].Add(4); ` ` ` `graph[1].Add(5); ` ` ` ` ` `dfs(1, 1); ` ` ` ` ` `Console.Write(ans); ` ` ` `} ` `} ` ` ` `// This code is contributed by PrinciRaj1992 ` |

*chevron_right*

*filter_none*

**Output:**

3

__Complexity Analysis:__

**Time Complexity:**O(N).

In DFS, every node of the tree is processed once and hence the complexity due to the dfs is O(N) for N nodes in the tree. Therefore, the time complexity is O(N).**Auxiliary Space:**O(1).

Any extra space is not required, so the space complexity is constant.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Count of all prime weight nodes between given nodes in the given Tree
- Count the nodes in the given tree whose weight is even
- Count the nodes in the given tree whose weight is a power of two
- Count the nodes of the given tree whose weight has X as a factor
- Count the nodes in the given tree whose weight is even parity
- Count the nodes in the given tree whose weight is prime
- Count the nodes in the given Tree whose weight is a Perfect Number
- Count the nodes in the given tree whose weight is a powerful number
- Count nodes in the given tree whose weight is a fibonacci number
- Count of Nodes which has Prime Digit sum weight in a Tree
- Query to find the maximum and minimum weight between two nodes in the given tree using LCA.
- Count the nodes whose weight is a perfect square
- Count the nodes of the tree which make a pangram when concatenated with the sub-tree nodes
- Count number of paths whose weight is exactly X and has at-least one edge of weight M
- Determine the count of Leaf nodes in an N-ary tree
- Count Non-Leaf nodes in a Binary Tree
- Count the number of nodes at a given level in a tree using DFS
- Count the number of nodes at given level in a tree using BFS.
- Count the nodes of the given tree whose weighted string is a palindrome
- Program to count leaf nodes in a binary tree

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.