Given an array **arr[]** and an integer **K**, the task is to calculate the count the factors of **K** present in the array.**Examples:**

Input:arr[] = {1, 2, 4, 5, 6}, K = 6Output:3Explanation:

There are three numbers present in the array those are factors of K = 6 – {1, 2, 6}Input:arr[] = {1, 2, 12, 24}, K = 20Output:2Explanation:

There are two numbers present in the array those are factors of K = 20 – {1, 2}

**Naive Approach:** A simple solution for this problem is to find all the factors of K and then for each factor iterate over the array and check that it is present in the array or not. If yes then increment the count of factors by 1.**Efficient Approach:** The idea is to instead of finding all factors of the number K iterate over the array and check for each element that it is the factor of K, or not with the help of the modulo operator. If yes then increment the count of factors of K.

Below is the implementation of the above approach:

## C++

`// C++ implementation to find the count` `// of factors of K present in array` `#include <iostream>` `using` `namespace` `std;` `// Function to find the count` `// of factors of K present in array` `int` `calcCount(` `int` `arr[], ` `int` `n, ` `int` `k)` `{` ` ` `int` `count = 0;` ` ` `// Loop to consider every` ` ` `// element of array` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` `if` `(k % arr[i] == 0)` ` ` `count++;` ` ` `}` ` ` `return` `count;` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `arr[] = { 1, 2, 4, 5, 6 };` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `int` `k = 6;` ` ` `// Function Call` ` ` `cout << calcCount(arr, n, k);` ` ` `return` `0;` `}` |

## Java

`// Java implementation to find the count` `// of factors of K present in array` `class` `GFG{` `// Function to find the count` `// of factors of K present in array` `static` `int` `calcCount(` `int` `arr[], ` `int` `n, ` `int` `k)` `{` ` ` `int` `count = ` `0` `;` ` ` `// Loop to consider every` ` ` `// element of array` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++)` ` ` `{` ` ` `if` `(k % arr[i] == ` `0` `)` ` ` `count++;` ` ` `}` ` ` `return` `count;` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `arr[] = { ` `1` `, ` `2` `, ` `4` `, ` `5` `, ` `6` `};` ` ` `int` `n = arr.length;` ` ` `int` `k = ` `6` `;` ` ` `// Function Call` ` ` `System.out.print(calcCount(arr, n, k));` `}` `}` `// This code is contributed by gauravrajput1` |

## Python3

`# Python3 implementation to find the count` `# of factors of K present in array` `# Function to find the count` `# of factors of K present in array` `def` `calcCount(arr, n, k):` ` ` `count ` `=` `0` ` ` `# Loop to consider every` ` ` `# element of array` ` ` `for` `i ` `in` `range` `(` `0` `, n):` ` ` `if` `(k ` `%` `arr[i] ` `=` `=` `0` `):` ` ` `count ` `=` `count ` `+` `1` ` ` `return` `count` `# Driver Code` `arr ` `=` `[ ` `1` `, ` `2` `, ` `4` `, ` `5` `, ` `6` `]` `n ` `=` `len` `(arr)` `k ` `=` `6` `# Function Call` `print` `(calcCount(arr, n, k))` `# This code is contributed by PratikBasu ` |

## C#

`// C# implementation to find the count` `// of factors of K present in array` `using` `System;` `class` `GFG{` `// Function to find the count` `// of factors of K present in array` `static` `int` `calcCount(` `int` `[]arr, ` `int` `n, ` `int` `k)` `{` ` ` `int` `count = 0;` ` ` `// Loop to consider every` ` ` `// element of array` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `{` ` ` `if` `(k % arr[i] == 0)` ` ` `count++;` ` ` `}` ` ` `return` `count;` `}` `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` ` ` `int` `[]arr = { 1, 2, 4, 5, 6 };` ` ` `int` `n = arr.Length;` ` ` `int` `k = 6;` ` ` `// Function Call` ` ` `Console.Write(calcCount(arr, n, k));` `}` `}` `// This code is contributed by Amit Katiyar` |

## Javascript

`<script>` `// Javascript implementation to find the count` `// of factors of K present in array` `// Function to find the count` `// of factors of K present in array` `function` `calcCount(arr, n, k)` `{` ` ` `var` `count = 0;` ` ` `// Loop to consider every` ` ` `// element of array` ` ` `for` `(` `var` `i = 0; i < n; i++) {` ` ` `if` `(k % arr[i] == 0)` ` ` `count++;` ` ` `}` ` ` `return` `count;` `}` `// Driver Code` `var` `arr = [ 1, 2, 4, 5, 6 ];` `var` `n = arr.length;` `var` `k = 6;` `// Function Call` `document.write( calcCount(arr, n, k));` `</script>` |

**Output:**

3

**Time Complexity:** O(N)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**