Related Articles

Related Articles

Count substrings of same length differing by a single character from two given strings
  • Last Updated : 07 Dec, 2020

Given two strings S and T of length N and M respectively, the task is to count the number of ways of obtaining same-length substring from both the strings such that they have a single different character.

Examples:

Input: S = “ab”, T = “bb”
Output: 3
Explanation: The following are the pairs of substrings from S and T differ by a single character:

  1. (“a”, “b”)
  2. (“a”, “b”)
  3. (“ab”, “bb”)

Input: S = “aba”, T = “baba”
Output: 6

Naive Approach: The simplest approach is to generate all possible substrings from both the given strings and then count all possible pairs of substrings of the same lengths which can be made equal by changing a single character. 



Time Complexity: O(N3*M3)
Auxiliary Space: O(N2)

Efficient Approach: To optimize the above approach, the idea is to iterate over all characters of both the given strings simultaneously and for each pair of different characters, count all those substrings of equal length starting from the next index of the current different character. Print the count obtained after checking for all pairs of different characters.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ pprogram for the above approach
#include <bits/stdc++.h>
using namespace std;
     
// Function to count the number of
// substrings of equal length which
// differ by a single character
 int countSubstrings(string s, string t)
{
     
    // Stores the count of
    // pairs of substrings
    int answ = 0;
 
    // Traverse the string s
    for(int i = 0; i < s.size(); i++)
    {
         
        // Traverse the string t
        for(int j = 0; j < t.size(); j++)
        {
             
            // Different character
            if (t[j] != s[i])
            {
                 
                // Increment the answer
                answ += 1;
                 
                int k = 1;
                int z = -1;
                int q = 1;
 
                // Count equal substrings
                // from next index
                while (j + z >= 0 &&
                       0 <= i + z &&
                   s[i + z] ==
                   t[j + z])
                {
                    z -= 1;
 
                    // Increment the count
                    answ += 1;
 
                    // Increment q
                    q += 1;
                }
 
                // Check the condtion
                while (s.size() > i + k &&
                       j + k < t.size() &&
                         s[i + k] ==
                         t[j + k])
                {
                     
                    // Increment k
                    k += 1;
 
                    // Add q to count
                    answ += q;
 
                    // Decrement z
                    z = -1;
                }
            }
        }
    }
     
    // Return the final count
    return answ;
}
 
// Driver Code
int main()
{
    string S = "aba";
    string T = "baba";
 
    // Function Call
    cout<<(countSubstrings(S, T));
 
}
 
// This code is contributed by 29AjayKumar

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
class GFG{
     
// Function to count the number of
// subStrings of equal length which
// differ by a single character
static int countSubStrings(String s, String t)
{
     
    // Stores the count of
    // pairs of subStrings
    int answ = 0;
 
    // Traverse the String s
    for(int i = 0; i < s.length(); i++)
    {
         
        // Traverse the String t
        for(int j = 0; j < t.length(); j++)
        {
             
            // Different character
            if (t.charAt(j) != s.charAt(i))
            {
                 
                // Increment the answer
                answ += 1;
                 
                int k = 1;
                int z = -1;
                int q = 1;
 
                // Count equal subStrings
                // from next index
                while (j + z >= 0 &&
                       0 <= i + z &&
                   s.charAt(i + z) ==
                   t.charAt(j + z))
                {
                    z -= 1;
 
                    // Increment the count
                    answ += 1;
 
                    // Increment q
                    q += 1;
                }
 
                // Check the condtion
                while (s.length() > i + k &&
                       j + k < t.length() &&
                         s.charAt(i + k) ==
                         t.charAt(j + k))
                {
                     
                    // Increment k
                    k += 1;
 
                    // Add q to count
                    answ += q;
 
                    // Decrement z
                    z = -1;
                }
            }
        }
    }
     
    // Return the final count
    return answ;
}
 
// Driver Code
public static void main(String[] args)
{
    String S = "aba";
    String T = "baba";
 
    // Function Call
    System.out.println(countSubStrings(S, T));
}
}
 
// This code is contributed by gauravrajput1

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to count the number of
# substrings of equal length which
# differ by a single character
def countSubstrings(s, t):
 
    # Stores the count of
    # pairs of substrings
    answ = 0
     
    # Traverse the string s
    for i in range(len(s)):
     
        # Traverse the string t
        for j in range(len(t)):
         
            # Different character
            if t[j] != s[i]:
             
                # Increment the answer
                answ += 1
                 
                k = 1
                z = -1
                q = 1
                 
                # Count equal substrings
                # from next index
                while (
                    j + z >= 0 <= i + z and
                    s[i + z] == t[j + z]
                    ):
                 
                    z -= 1
                     
                    # Increment the count
                    answ += 1
                     
                    # Increment q
                    q += 1
 
                # Check the condtion
                while (
                    len(s) > i + k and
                    j + k < len(t) and
                    s[i + k] == t[j + k]
                    ):
 
                    # Increment k
                    k += 1
 
                    # Add q to count
                    answ += q
 
                    # Decrement z
                    z = -1
                     
    # Return the final count
    return answ
 
# Driver Code
 
S = "aba"
T = "baba"
 
# Function Call
print(countSubstrings(S, T))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
 
class GFG
{
     
// Function to count the number of
// subStrings of equal length which
// differ by a single character
static int countSubStrings(String s, String t)
{
     
    // Stores the count of
    // pairs of subStrings
    int answ = 0;
 
    // Traverse the String s
    for(int i = 0; i < s.Length; i++)
    {
         
        // Traverse the String t
        for(int j = 0; j < t.Length; j++)
        {
             
            // Different character
            if (t[j] != s[i])
            {
                 
                // Increment the answer
                answ += 1;
                 
                int k = 1;
                int z = -1;
                int q = 1;
 
                // Count equal subStrings
                // from next index
                while (j + z >= 0 &&
                       0 <= i + z &&
                   s[i + z] ==
                   t[j + z])
                {
                    z -= 1;
 
                    // Increment the count
                    answ += 1;
 
                    // Increment q
                    q += 1;
                }
 
                // Check the condtion
                while (s.Length > i + k &&
                       j + k < t.Length &&
                         s[i + k] ==
                         t[j + k])
                {
                     
                    // Increment k
                    k += 1;
 
                    // Add q to count
                    answ += q;
 
                    // Decrement z
                    z = -1;
                }
            }
        }
    }
     
    // Return the readonly count
    return answ;
}
 
// Driver Code
public static void Main(String[] args)
{
    String S = "aba";
    String T = "baba";
 
    // Function Call
    Console.WriteLine(countSubStrings(S, T));
}
}
 
// This code is contributed by 29AjayKumar

chevron_right


Output: 

6

 

Time Complexity: O(N*M)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :