Given an **arr** of size **n**. The problem is to count all the subsequences having maximum number of distinct elements.

**Examples:**

Input : arr[] = {4, 7, 6, 7} Output : 2 The indexes for the subsequences are: {0, 1, 2} - Subsequence is {4, 7, 6} and {0, 2, 3} - Subsequence is {4, 6, 7} Input : arr[] = {9, 6, 4, 4, 5, 9, 6, 1, 2} Output : 8

**Naive Approach:** Consider all the subsequences having distinct elements and count the one’s having maximum distinct elements.

**Efficient Approach:** Create a hash table to store the frequency of each element of the array. Take product of all the frequencies.

The solution is based on the fact that there is always 1 subsequence possible when all elements are distinct. If elements repeat, every occurrence of repeating element makes a mew subsequence of distinct elements.

## C++

`// C++ implementation to count subsequences having` `// maximum distinct elements` `#include <bits/stdc++.h>` `using` `namespace` `std;` ` ` `typedef` `unsigned ` `long` `long` `int` `ull;` ` ` `// function to count subsequences having` `// maximum distinct elements` `ull countSubseq(` `int` `arr[], ` `int` `n)` `{` ` ` `// unordered_map 'um' implemented as` ` ` `// hash table` ` ` `unordered_map<` `int` `, ` `int` `> um;` ` ` ` ` `ull count = 1;` ` ` ` ` `// count frequency of each element` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `um[arr[i]]++;` ` ` ` ` `// traverse 'um'` ` ` `for` `(` `auto` `itr = um.begin(); itr != um.end(); itr++)` ` ` ` ` `// multiply frequency of each element` ` ` `// and accumulate it in 'count'` ` ` `count *= (itr->second);` ` ` ` ` `// required number of subsequences` ` ` `return` `count;` `}` ` ` `// Driver program to test above` `int` `main()` `{` ` ` `int` `arr[] = { 4, 7, 6, 7 };` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `cout << ` `"Count = "` ` ` `<< countSubseq(arr, n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation to count subsequences having ` `// maximum distinct elements` `import` `java.util.HashMap;` ` ` `class` `geeks` `{` ` ` ` ` `// function to count subsequences having` ` ` `// maximum distinct elements` ` ` `public` `static` `long` `countSubseq(` `int` `[] arr, ` `int` `n) ` ` ` `{` ` ` ` ` `// unordered_map 'um' implemented as` ` ` `// hash table` ` ` `HashMap<Integer, Integer> um = ` `new` `HashMap<>();` ` ` ` ` `long` `count = ` `1` `;` ` ` ` ` `// count frequency of each element` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++)` ` ` `{` ` ` `if` `(um.get(arr[i]) != ` `null` `)` ` ` `{` ` ` `int` `a = um.get(arr[i]);` ` ` `um.put(arr[i], ++a);` ` ` `}` ` ` `else` ` ` `um.put(arr[i], ` `1` `);` ` ` `}` ` ` ` ` `// traverse 'um'` ` ` `for` `(HashMap.Entry<Integer, Integer> entry : um.entrySet())` ` ` `{` ` ` ` ` `// multiply frequency of each element` ` ` `// and accumulate it in 'count'` ` ` `count *= entry.getValue();` ` ` `}` ` ` ` ` `// required number of subsequences` ` ` `return` `count;` ` ` `}` ` ` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{` ` ` `int` `[] arr = { ` `4` `, ` `7` `, ` `6` `, ` `7` `};` ` ` `int` `n = arr.length;` ` ` `System.out.println(` `"Count = "` `+ countSubseq(arr, n));` ` ` `}` `}` ` ` `// This code is contributed by` `// sanjeev2552` |

## Python3

`# Python 3 implementation to count subsequences ` `# having maximum distinct elements` ` ` `# function to count subsequences having` `# maximum distinct elements` `def` `countSubseq(arr, n):` ` ` ` ` `# unordered_map 'um' implemented` ` ` `# as hash table` ` ` `# take range equal to maximum ` ` ` `# value of arr` ` ` `um ` `=` `{i:` `0` `for` `i ` `in` `range` `(` `8` `)}` ` ` ` ` `count ` `=` `1` ` ` ` ` `# count frequency of each element` ` ` `for` `i ` `in` `range` `(n):` ` ` `um[arr[i]] ` `+` `=` `1` ` ` ` ` `# traverse 'um'` ` ` `for` `key, values ` `in` `um.items():` ` ` ` ` `# multiply frequency of each element` ` ` `# and accumulate it in 'count'` ` ` `if` `(values > ` `0` `):` ` ` `count ` `*` `=` `values` ` ` ` ` `# required number of subsequences` ` ` `return` `count` ` ` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `arr ` `=` `[` `4` `, ` `7` `, ` `6` `, ` `7` `]` ` ` `n ` `=` `len` `(arr)` ` ` `print` `(` `"Count ="` `, countSubseq(arr, n))` ` ` `# This code is contributed by` `# Surendra_Gangwar` |

## C#

`// C# implementation to count subsequences` `// having maximum distinct elements` `using` `System;` `using` `System.Collections.Generic; ` ` ` `class` `GFG` `{` ` ` ` ` `// function to count subsequences having` ` ` `// maximum distinct elements` ` ` `public` `static` `long` `countSubseq(` `int` `[] arr,` ` ` `int` `n) ` ` ` `{` ` ` ` ` `// unordered_map 'um' implemented as` ` ` `// hash table` ` ` `Dictionary<` `int` `, ` ` ` `int` `> um = ` `new` `Dictionary<` `int` `,` ` ` `int` `>();` ` ` ` ` `long` `count = 1;` ` ` ` ` `// count frequency of each element` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `{` ` ` `if` `(um.ContainsKey(arr[i]))` ` ` `{` ` ` `int` `a = um[arr[i]];` ` ` `um.Remove(arr[i]);` ` ` `um.Add(arr[i], ++a);` ` ` `}` ` ` `else` ` ` `um.Add(arr[i], 1);` ` ` `}` ` ` ` ` `// traverse 'um'` ` ` `foreach` `(KeyValuePair<` `int` `, ` `int` `> entry ` `in` `um)` ` ` `{` ` ` ` ` `// multiply frequency of each element` ` ` `// and accumulate it in 'count'` ` ` `count *= entry.Value;` ` ` `}` ` ` ` ` `// required number of subsequences` ` ` `return` `count;` ` ` `}` ` ` ` ` `// Driver Code` ` ` `public` `static` `void` `Main(String[] args) ` ` ` `{` ` ` `int` `[] arr = { 4, 7, 6, 7 };` ` ` `int` `n = arr.Length;` ` ` `Console.WriteLine(` `"Count = "` `+ ` ` ` `countSubseq(arr, n));` ` ` `}` `}` ` ` `// This code is contributed by Princi Singh` |

**Output:**

Count = 2

**Time Complexity:** O(n).**Auxiliary Space:** O(n).

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.