Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count subsequences 01 in string generated by concatenation of given numeric string K times

  • Difficulty Level : Expert
  • Last Updated : 18 Nov, 2021

Given a string S and a positive integer K, the task is to find the number of subsequences “01” in the string generated by concatenation of the given numeric string S K times.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: S = “0171”, K = 2
Output: 6
Explanation:
The string formed by concatenation of S, K number of times is “01710171”. There are total 6 possible subsequences which are marked as bold = {“01710171″, “01710171″, “01710171″, “01710171“, “01710171″, “01710171“}.



Input: S = “230013110087”, K = 2
Output: 24   

Naive Approach: The simplest approach to solve the given problem is to generate the resultant string by concatenating S, K number of times and then find all possible pairs (i, j) from the string such that (i < j) and S[i] = 0 and S[j] = 1.

Time Complexity: O((N*K)2)
Auxiliary Space: O(N*K)

Efficient Approach: The task can also be optimized by observing the following 2 Cases:

  • Case 1: Substring “01” strictly inside each occurrence of S in P. Let suppose C be the count of occurrences of “01” in S, then in P it would be C*K.
  • Case 2: When ‘0‘ lies inside at ith occurrence of S and ‘1‘ lies inside some jth occurrence to form a subsequence “01” such that i < j, then finding the number of occurrences of “01” will be the same as choosing the two strings or occurrence of strings in P given by ((K)*(K – 1))/2. Let that value be Si and Sj and multiplying it by the number of occurrences of ‘0’ in Si(denoted by cnt0) and a number of occurrences of ‘1’ in Sj(denoted by cnt1) gives the number of subsequences of “01”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the number of
// subsequences of "01"
int countSubsequence(string S, int N,
                     int K)
{
    // Store count of 0's and 1's
    int C = 0, C1 = 0, C0 = 0;
 
    for (int i = 0; i < N; i++) {
        if (S[i] == '1')
            C1++;
        else if (S[i] == '0')
            C0++;
    }
 
    // Count of subsequences without
    // concatenation
    int B1 = 0;
    for (int i = 0; i < N; i++) {
        if (S[i] == '1')
            B1++;
        else if (S[i] == '0')
            C = C + (C1 - B1);
    }
 
    // Case 1
    int ans = C * K;
 
    // Case 2
    ans += (C1 * C0 * (((K) * (K - 1)) / 2));
 
    // Return the total count
    return ans;
}
 
// Driver Code
int main()
{
    string S = "230013110087";
    int K = 2;
    int N = S.length();
 
    cout << countSubsequence(S, N, K);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG {
 
    // Function to calculate the number of
    // subsequences of "01"
    static int countSubsequence(String S, int N, int K)
    {
        // Store count of 0's and 1's
        int C = 0, C1 = 0, C0 = 0;
 
        for (int i = 0; i < N; i++) {
            if (S.charAt(i) == '1')
                C1++;
            else if (S.charAt(i) == '0')
                C0++;
        }
 
        // Count of subsequences without
        // concatenation
        int B1 = 0;
        for (int i = 0; i < N; i++) {
            if (S.charAt(i) == '1')
                B1++;
            else if (S.charAt(i) == '0')
                C = C + (C1 - B1);
        }
 
        // Case 1
        int ans = C * K;
 
        // Case 2
        ans += (C1 * C0 * (((K) * (K - 1)) / 2));
 
        // Return the total count
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String S = "230013110087";
        int K = 2;
        int N = S.length();
 
        System.out.println(countSubsequence(S, N, K));
    }
}
 
// This code  is contributed by Potta Lokesh

Python3




# python program for the above approach
 
 
# Function to calculate the number of
# subsequences of "01"
def countSubsequence(S, N, K):
 
        # Store count of 0's and 1's
    C = 0
    C1 = 0
    C0 = 0
 
    for i in range(0, N):
 
        if (S[i] == '1'):
            C1 += 1
        elif (S[i] == '0'):
            C0 += 1
 
        # Count of subsequences without
        # concatenation
    B1 = 0
 
    for i in range(0, N):
        if (S[i] == '1'):
            B1 += 1
        elif (S[i] == '0'):
            C = C + (C1 - B1)
 
        # Case 1
    ans = C * K
 
    # Case 2
 
    ans += (C1 * C0 * (((K) * (K - 1)) // 2))
 
    # Return the total count
    return ans
 
 
# Driver Code
if __name__ == "__main__":
 
    S = "230013110087"
    K = 2
    N = len(S)
 
    print(countSubsequence(S, N, K))
 
    # This code is contributed by rakeshsahni

C#




// C# implementation for the above approach
using System;
class GFG
{
 
    // Function to calculate the number of
    // subsequences of "01"
    static int countSubsequence(string S, int N, int K)
    {
       
        // Store count of 0's and 1's
        int C = 0, C1 = 0, C0 = 0;
 
        for (int i = 0; i < N; i++) {
            if (S[i] == '1')
                C1++;
            else if (S[i] == '0')
                C0++;
        }
 
        // Count of subsequences without
        // concatenation
        int B1 = 0;
        for (int i = 0; i < N; i++) {
            if (S[i] == '1')
                B1++;
            else if (S[i] == '0')
                C = C + (C1 - B1);
        }
 
        // Case 1
        int ans = C * K;
 
        // Case 2
        ans += (C1 * C0 * (((K) * (K - 1)) / 2));
 
        // Return the total count
        return ans;
    }
 
    // Driver Code
    public static void Main()
    {
        string S = "230013110087";
        int K = 2;
        int N = S.Length;
 
        Console.Write(countSubsequence(S, N, K));
    }
}
 
// This code is contributed by sanjoy_62.

Javascript




<script>
// Javascript program for the above approach
 
// Function to calculate the number of
// subsequences of "01"
function countSubsequence(S, N, K) {
  // Store count of 0's and 1's
  let C = 0,
    C1 = 0,
    C0 = 0;
 
  for (let i = 0; i < N; i++) {
    if (S[i] == "1") C1++;
    else if (S[i] == "0") C0++;
  }
 
  // Count of subsequences without
  // concatenation
  let B1 = 0;
  for (let i = 0; i < N; i++) {
    if (S[i] == "1") B1++;
    else if (S[i] == "0") C = C + (C1 - B1);
  }
 
  // Case 1
  let ans = C * K;
 
  // Case 2
  ans += C1 * C0 * ((K * (K - 1)) / 2);
 
  // Return the total count
  return ans;
}
 
// Driver Code
 
let S = "230013110087";
let K = 2;
let N = S.length;
 
document.write(countSubsequence(S, N, K));
 
// This code is contributed by gfgking.
</script>
Output: 
24

 

Time Complexity: O(N)
Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :