Skip to content
Related Articles

Related Articles

Count subarrays with sum equal to its XOR value
  • Difficulty Level : Medium
  • Last Updated : 30 Apr, 2021

Given an array arr[] containing N elements, the task is to count the number of sub-arrays whose XOR of all the elements is equal to the sum of all the elements in the subarray. 
Examples: 
 

Input: arr[] = {2, 5, 4, 6} 
Output:
Explanation: 
All the subarrays {{2}, {5}, {4}, {6}} satisfies the above condition since the XOR of the subarrays is same as the sum. Apart from these, the subarray {2, 5} also satisfies the condition: 
(2 xor 5) = 7 = (2 + 5)
Input: arr[] = {1, 2, 3, 4, 5} 
Output:
 

 

Naive Approach: The naive approach for this problem is to consider all the sub-arrays and for every subarray, check if the XOR is equal to the sum. 
Time Complexity: O(N2)
Efficient Approach: The idea is to use the concept of sliding window. First, we calculate the window for which the above condition is satisfied and then we slide through every element till N. The following steps can be followed to compute the answer: 
 

  • Maintain two pointers left and right initially assigned to zero.
  • Calculate the window using right pointer where the condition A xor B = A + B is satisfied.
  • Count of the sub-arrays will be right – left.
  • Iterate through every element and remove the previous element.

Below is the implementation of the above approach:
 



C++




// C++ program to count the number
// of subarrays such that Xor of
// all the elements of that subarray
// is equal to sum of the elements
 
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
// Function to count the number
// of subarrays such that Xor of
// all the elements of that subarray
// is equal to sum of the elements
ll operation(int arr[], int N)
{
    // Maintain two pointers
    // left and right
    ll right = 0, ans = 0,
       num = 0;
 
    // Iterating through the array
    for (ll left = 0; left < N; left++) {
 
        // Calculate the window
        // where the above condition
        // is satisfied
        while (right < N
               && num + arr[right]
                      == (num ^ arr[right])) {
            num += arr[right];
            right++;
        }
 
        // Count will be (right-left)
        ans += right - left;
        if (left == right)
            right++;
 
        // Remove the previous element
        // as it is already included
        else
            num -= arr[left];
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << operation(arr, N);
}

Java




// Java program to count the number
// of subarrays such that Xor of all
// the elements of that subarray is
// equal to sum of the elements
import java.io.*;
 
class GFG{
     
// Function to count the number
// of subarrays such that Xor of
// all the elements of that subarray
// is equal to sum of the elements
static long operation(int arr[], int N)
{
     
    // Maintain two pointers
    // left and right
    int right = 0;
    int    num = 0;
    long ans = 0;
 
    // Iterating through the array
    for(int left = 0; left < N; left++)
    {
        
       // Calculate the window
       // where the above condition
       // is satisfied
       while (right < N && num + arr[right] ==
                          (num ^ arr[right]))
       {
           num += arr[right];
           right++;
       }
        
       // Count will be (right-left)
       ans += right - left;
       if (left == right)
           right++;
        
       // Remove the previous element
       // as it is already included
       else
           num -= arr[left];
    }
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int N = arr.length;
 
    System.out.println(operation(arr, N));
}
}
 
// This code is contributed by offbeat

Python3




# Python3 program to count the number
# of subarrays such that Xor of
# all the elements of that subarray
# is equal to sum of the elements
 
# Function to count the number
# of subarrays such that Xor of
# all the elements of that subarray
# is equal to sum of the elements
def operation(arr, N):
 
    # Maintain two pointers
    # left and right
    right = 0; ans = 0;
    num = 0;
 
    # Iterating through the array
    for left in range(0, N):
 
        # Calculate the window
        # where the above condition
        # is satisfied
        while (right < N and
               num + arr[right] ==
              (num ^ arr[right])):
            num += arr[right];
            right += 1;
 
        # Count will be (right-left)
        ans += right - left;
        if (left == right):
            right += 1;
 
        # Remove the previous element
        # as it is already included
        else:
            num -= arr[left];
 
    return ans;
 
# Driver code
arr = [1, 2, 3, 4, 5];
N = len(arr)
print(operation(arr, N));
 
# This code is contributed by Nidhi_biet

C#




// C# program to count the number
// of subarrays such that Xor of all
// the elements of that subarray is
// equal to sum of the elements
using System;
class GFG{
     
// Function to count the number
// of subarrays such that Xor of
// all the elements of that subarray
// is equal to sum of the elements
static long operation(int []arr, int N)
{
     
    // Maintain two pointers
    // left and right
    int right = 0;
    int num = 0;
    long ans = 0;
 
    // Iterating through the array
    for(int left = 0; left < N; left++)
    {
         
        // Calculate the window
        // where the above condition
        // is satisfied
        while (right < N &&
               num + arr[right] ==
              (num ^ arr[right]))
        {
            num += arr[right];
            right++;
        }
             
        // Count will be (right-left)
        ans += right - left;
        if (left == right)
            right++;
             
        // Remove the previous element
        // as it is already included
        else
            num -= arr[left];
    }
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 3, 4, 5 };
    int N = arr.Length;
 
    Console.WriteLine(operation(arr, N));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript program to count the number
// of subarrays such that Xor of
// all the elements of that subarray
// is equal to sum of the elements
 
// Function to count the number
// of subarrays such that Xor of
// all the elements of that subarray
// is equal to sum of the elements
function operation(arr, N)
{
    // Maintain two pointers
    // left and right
    let right = 0, ans = 0,
       num = 0;
 
    // Iterating through the array
    for (let left = 0; left < N; left++) {
 
        // Calculate the window
        // where the above condition
        // is satisfied
        while (right < N
               && num + arr[right]
                      == (num ^ arr[right])) {
            num += arr[right];
            right++;
        }
 
        // Count will be (right-left)
        ans += right - left;
        if (left == right)
            right++;
 
        // Remove the previous element
        // as it is already included
        else
            num -= arr[left];
    }
 
    return ans;
}
 
// Driver code
    let arr = [ 1, 2, 3, 4, 5 ];
    let N = arr.length;
 
    document.write(operation(arr, N));
 
</script>
Output: 
7

 

Time Complexity: O(N), where N is the length of the array.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up
Recommended Articles
Page :