Count subarrays with Prime sum

Given an array A[] of integers. The task is to count total subarrays whose sum is prime with ( size > 1 ).

Examples:

Input : A[] = { 1, 2, 3, 4, 5 }
Output : 3
Subarrays are -> {1, 2}, {2, 3}, {3, 4}

Input : A = { 22, 33, 4, 1, 10 };
Output : 4



Approach: Generate all possible subarrays and store their sum in a vector. Iterate the vector and check whether a sum is prime or not. It YES increment the count.

You can use sieve-of-eratosthenes to check whether a sum is prime in O(1).

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count subarrays
// with Prime sum
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to count subarrays
// with Prime sum
int primeSubarrays(int A[], int n)
{
    int max_val = int(pow(10, 7));
  
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
  
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p <= max_val; p++) {
  
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
  
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
  
    int cnt = 0; // Initialize result
  
    // Traverse through the array
    for (int i = 0; i < n - 1; ++i) {
        int val = A[i];
        for (int j = i + 1; j < n; ++j) {
            val += A[j];
  
            if (prime[val])
                ++cnt;
        }
    }
  
    // return answer
    return cnt;
}
  
// Driver program
int main()
{
    int A[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(A) / sizeof(A[0]);
  
    cout << primeSubarrays(A, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count subarrays 
// with Prime sum 
import java.util.*;
class Solution
{
    
// Function to count subarrays 
// with Prime sum 
static int primeSubarrays(int A[], int n) 
    int max_val = (int)(Math.pow(10, 7)); 
    
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS 
    // THAN OR EQUAL TO max_val 
    // Create a boolean array "prime[0..n]". A 
    // value in prime[i] will finally be false 
    // if i is Not a prime, else true. 
    Vector<Boolean> prime=new Vector<Boolean>(max_val + 1); 
  
      
    //initilize initial value
    for (int p = 0; p <max_val + 1; p++)
    prime.add(p,true);
    
    // Remaining part of SIEVE 
    prime.set(0, false); 
    prime.set(1, false); 
    for (int p = 2; p * p <= max_val; p++) { 
    
        // If prime[p] is not changed, then 
        // it is a prime 
        if (prime.get(p) == true) { 
    
            // Update all multiples of p 
            for (int i = p * 2; i <= max_val; i += p) 
                prime.set(i, false); 
        
    
    
    int cnt = 0; // Initialize result 
    
    // Traverse through the array 
    for (int i = 0; i < n - 1; ++i) { 
        int val = A[i]; 
        for (int j = i + 1; j < n; ++j) { 
            val += A[j]; 
    
            if (prime.get(val)) 
                ++cnt; 
        
    
    
    // return answer 
    return cnt; 
    
// Driver program 
public static void main(String args[])
    int A[] = { 1, 2, 3, 4, 5 }; 
    int n = A.length; 
    
    System.out.print( primeSubarrays(A, n)); 
    
}
//contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to count subarrays 
# with Prime sum 
  
# Function to count subarrays 
# with Prime sum 
def primeSubarrays(A, n):
  
    max_val = 10**7
  
    # USE SIEVE TO FIND ALL PRIME NUMBERS 
    # LESS THAN OR EQUAL TO max_val 
    # Create a boolean array "prime[0..n]". A 
    # value in prime[i] will finally be false 
    # if i is Not a prime, else true. 
    prime = [True] * (max_val + 1
  
    # Remaining part of SIEVE 
    prime[0] = False
    prime[1] = False
    for p in range(2, int(max_val**(0.5)) + 1): 
  
        # If prime[p] is not changed, then 
        # it is a prime 
        if prime[p] == True
  
            # Update all multiples of p 
            for i in range(2 * p, max_val + 1, p):
                prime[i] = False
          
    cnt = 0 # Initialize result 
  
    # Traverse through the array 
    for i in range(0, n - 1): 
        val = A[i] 
        for j in range(i + 1, n): 
            val += A[j] 
  
            if prime[val] == True
                cnt += 1
  
    # return answer 
    return cnt 
  
# Driver Code
if __name__ == "__main__":
  
    A = [1, 2, 3, 4, 5
    n = len(A) 
  
    print(primeSubarrays(A, n))
  
# This code is contributed by Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count subarrays 
// with Prime sum 
  
class Solution
{
  
// Function to count subarrays 
// with Prime sum 
static int primeSubarrays(int[] A, int n) 
    int max_val = (int)(System.Math.Pow(10, 7)); 
  
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS 
    // THAN OR EQUAL TO max_val 
    // Create a boolean array "prime[0..n]". A 
    // value in prime[i] will finally be false 
    // if i is Not a prime, else true. 
    bool[] prime=new bool[max_val + 1]; 
  
      
    //initilize initial value
    for (int p = 0; p <max_val + 1; p++)
    prime[p]=true;
  
    // Remaining part of SIEVE 
    prime[0]=false
    prime[1]=false
    for (int p = 2; p * p <= max_val; p++) { 
  
        // If prime[p] is not changed, then 
        // it is a prime 
        if (prime[p] == true) { 
  
            // Update all multiples of p 
            for (int i = p * 2; i <= max_val; i += p) 
                prime[i]=false
        
    
  
    int cnt = 0; // Initialize result 
  
    // Traverse through the array 
    for (int i = 0; i < n - 1; ++i) { 
        int val = A[i]; 
        for (int j = i + 1; j < n; ++j) { 
            val += A[j]; 
  
            if (prime[val]) 
                ++cnt; 
        
    
  
    // return answer 
    return cnt; 
  
// Driver program 
static void Main()
    int[] A = { 1, 2, 3, 4, 5 }; 
    int n = A.Length; 
  
    System.Console.WriteLine( primeSubarrays(A, n)); 
  
}
//contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to count subarrays 
// with Prime sum 
  
  
// Function to count subarrays 
// with Prime sum 
function primeSubarrays($A, $n
    $max_val = pow(10, 5); 
  
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS 
    // THAN OR EQUAL TO max_val 
    // Create a boolean array "prime[0..n]". A 
    // value in prime[i] will finally be false 
    // if i is Not a prime, else true. 
    $prime=array_fill(0,$max_val + 1,true); 
  
    // Remaining part of SIEVE 
    $prime[0] = false; 
    $prime[1] = false; 
    for ($p = 2; $p * $p <= $max_val; $p++) { 
  
        // If prime[p] is not changed, then 
        // it is a prime 
        if ($prime[$p] == true) { 
  
            // Update all multiples of p 
            for ($i = $p * 2; $i <= $max_val; $i += $p
                $prime[$i] = false; 
        
    
  
    $cnt = 0; // Initialize result 
  
    // Traverse through the array 
    for ($i = 0; $i < $n - 1; ++$i) { 
        $val = $A[$i]; 
        for ($j = $i + 1; $j < $n; ++$j) { 
            $val += $A[$j]; 
  
            if ($prime[$val]) 
                ++$cnt
        
    
  
    // return answer 
    return $cnt
  
// Driver program 
   
    $A = array( 1, 2, 3, 4, 5 ); 
    $n = count($A); 
  
    echo primeSubarrays($A, $n); 
  
// This code is contributed by mits 
?>

chevron_right


Output:

3

Time Complexity: O(N2)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.