Count subarrays having odd Bitwise XOR
Given an array arr[] of size N, the task is to count the number of subarrays from the given array having odd Bitwise XOR value.
Examples:
Input: arr[] = {1, 4, 7, 9, 10}
Output: 8
Explanation: The subarrays having odd Bitwise XOR are {1}, {1, 4}, {1, 4, 7, 9}, {1, 4, 7, 9, 10}, {7}, {9}, {4, 7}, {9, 10}.Input: arr[] ={1, 5, 6}
Output: 3
Explanation: The subarrays having odd Bitwise XOR are {1}, {1, 5}, {1, 5, 6}.
Brute Force Approach:
A brute force approach to solve this problem would be to generate all possible subarrays of the given array and check if the Bitwise XOR of that subarray is odd or not. If it is odd, then increment the count of the number of subarrays having odd Bitwise XOR.
Algorithm
- Initialize a variable “count” to 0 to keep track of the number of subarrays with an odd XOR.
- Loop through all possible subarrays using two nested loops.
- For each subarray, initialize a variable “xor_val” to 0
- Loop through the elements of the subarray using a third loop.
- For each element, XOR it with the current value of “xor_val”.
- Check if the XOR value of all the elements in the subarray is odd or not. If it is odd, increment the “count” variable.
- After the nested loops are complete, print the value of “count” to get the number of subarrays with an odd XOR.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; void oddXorSubarray( int a[], int n) { int count = 0; for ( int i=0;i<n;i++) { for ( int j=i;j<n;j++) { int xor_val = 0; for ( int k=i;k<=j;k++) { xor_val ^= a[k]; } if (xor_val % 2 != 0) { count++; } } } cout<< count <<endl; } int main() { int arr[] = {1, 4, 7, 9, 10}; int N = sizeof (arr)/ sizeof (arr[0]); oddXorSubarray(arr, N); return 0; } |
Java
import java.util.*; public class Main { public static void oddXorSubarray( int [] a, int n) { int count = 0 ; for ( int i = 0 ; i < n; i++) { for ( int j = i; j < n; j++) { int xor_val = 0 ; for ( int k = i; k <= j; k++) { xor_val ^= a[k]; } if (xor_val % 2 != 0 ) { count++; } } } System.out.println(count); } public static void main(String[] args) { int [] arr = { 1 , 4 , 7 , 9 , 10 }; int N = arr.length; oddXorSubarray(arr, N); } } |
Python3
def oddXorSubarray(a, n): count = 0 for i in range (n): for j in range (i, n): xor_val = 0 for k in range (i, j + 1 ): xor_val ^ = a[k] if xor_val % 2 ! = 0 : count + = 1 print (count) arr = [ 1 , 4 , 7 , 9 , 10 ] N = len (arr) oddXorSubarray(arr, N) |
C#
using System; class Program { // Driver Code static void Main( string [] args) { int [] arr = { 1, 4, 7, 9, 10 }; int N = arr.Length; oddXorSubarray(arr, N); } // Function to find the odd XOR subarray static void oddXorSubarray( int [] a, int n) { int count = 0; // Loop through all possible subarrays for ( int i = 0; i < n; i++) { for ( int j = i; j < n; j++) { int xor_val = 0; // Compute XOR of all elements // in the subarray for ( int k = i; k <= j; k++) { xor_val ^= a[k]; } // If XOR value is odd, then // increment the value of count if (xor_val % 2 != 0) { count++; } } } Console.WriteLine(count); } } |
8
Time Complexity: O(N3)
Space Complexity: O(1)
Naive Approach: The simplest approach to solve this problem is to check for every subarray whether its Bitwise XOR is odd or not. If found to be odd, then increase the count. Finally, print the count as the result.
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is based on the observation that the Bitwise XOR of the subarray is odd only if the number of odd elements in that subarray is odd. To solve the problem, find the number of subarrays starting from the index 0 and satisfying the given conditions. Then, Traverse the array and update the number of subarrays starting at index i that satisfy the given condition. Follow the steps below to solve the problem:
- Initialize variables Odd, C_odd as 0, to store the number of odd numbers up to ith index and the number of required subarrays starting at ith index respectively.
- Traverse the array arr[] using the variable i and check for the following steps:
- If the value of arr[i] is odd, update the value of Odd to !Odd.
- If the value of Odd is non-zero, increment C_odd by 1.
- Again, traverse the array arr[] using the variable i and perform the following:
- Add the value of C_odd to a variable res.
- If the value of arr[i] is odd, update the value of C_odd to (N – i – C_odd).
- After completing the above steps, print the value of res as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count the number of subarrays // of the given array having odd Bitwise XOR void oddXorSubarray( int a[], int n) { // Stores number of odd // numbers upto i-th index int odd = 0; // Stores number of required // subarrays starting from i-th index int c_odd = 0; // Store the required result int result = 0; // Find the number of subarrays having odd // Bitwise XOR values starting at 0-th index for ( int i = 0; i < n; i++) { // Check if current element is odd if (a[i] & 1) { odd = !odd; } // If the current value of odd is not // zero, increment c_odd by 1 if (odd) { c_odd++; } } // Find the number of subarrays having odd // bitwise XOR value starting at ith index // and add to result for ( int i = 0; i < n; i++) { // Add c_odd to result result += c_odd; if (a[i] & 1) { c_odd = (n - i - c_odd); } } // Print the result cout << result; } // Driver Code int main() { // Given array int arr[] = { 1, 4, 7, 9, 10 }; // Stores the size of the array int N = sizeof (arr) / sizeof (arr[0]); oddXorSubarray(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { // Function to count the number of subarrays // of the given array having odd Bitwise XOR static void oddXorSubarray( int a[], int n) { // Stores number of odd // numbers upto i-th index int odd = 0 ; // Stores number of required // subarrays starting from i-th index int c_odd = 0 ; // Store the required result int result = 0 ; // Find the number of subarrays having odd // Bitwise XOR values starting at 0-th index for ( int i = 0 ; i < n; i++) { // Check if current element is odd if (a[i] % 2 != 0 ) { odd = (odd == 0 ) ? 1 : 0 ; } // If the current value of odd is not // zero, increment c_odd by 1 if (odd != 0 ) { c_odd++; } } // Find the number of subarrays having odd // bitwise XOR value starting at ith index // and add to result for ( int i = 0 ; i < n; i++) { // Add c_odd to result result += c_odd; if (a[i] % 2 != 0 ) { c_odd = (n - i - c_odd); } } // Print the result System.out.println(result); } // Driver Code public static void main (String[] args) { // Given array int arr[] = { 1 , 4 , 7 , 9 , 10 }; // Stores the size of the array int N = arr.length; oddXorSubarray(arr, N); } } // This code is contributed by Dharanendra L V. |
Python3
# Python3 program for the above approach # Function to count the number of subarrays # of the given array having odd Bitwise XOR def oddXorSubarray(a, n): # Stores number of odd # numbers upto i-th index odd = 0 # Stores number of required # subarrays starting from i-th index c_odd = 0 # Store the required result result = 0 # Find the number of subarrays having odd # Bitwise XOR values starting at 0-th index for i in range (n): # Check if current element is odd if (a[i] & 1 ): odd = not odd # If the current value of odd is not # zero, increment c_odd by 1 if (odd): c_odd + = 1 # Find the number of subarrays having odd # bitwise XOR value starting at ith index # and add to result for i in range (n): # Add c_odd to result result + = c_odd if (a[i] & 1 ): c_odd = (n - i - c_odd) # Print the result print (result) # Driver Code if __name__ = = '__main__' : # Given array arr = [ 1 , 4 , 7 , 9 , 10 ] # Stores the size of the array N = len (arr) oddXorSubarray(arr, N) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; class GFG{ // Function to count the number of subarrays // of the given array having odd Bitwise XOR static void oddXorSubarray( int []a, int n) { // Stores number of odd // numbers upto i-th index int odd = 0; // Stores number of required // subarrays starting from i-th index int c_odd = 0; // Store the required result int result = 0; // Find the number of subarrays having // odd Bitwise XOR values starting at // 0-th index for ( int i = 0; i < n; i++) { // Check if current element is odd if (a[i] % 2 != 0) { odd = (odd == 0) ? 1 : 0; } // If the current value of odd is not // zero, increment c_odd by 1 if (odd != 0) { c_odd++; } } // Find the number of subarrays having odd // bitwise XOR value starting at ith index // and add to result for ( int i = 0; i < n; i++) { // Add c_odd to result result += c_odd; if (a[i] % 2 != 0) { c_odd = (n - i - c_odd); } } // Print the result Console.WriteLine(result); } // Driver Code public static void Main(String[] args) { // Given array int []arr = { 1, 4, 7, 9, 10 }; // Stores the size of the array int N = arr.Length; oddXorSubarray(arr, N); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // javascript program for the above approach // Function to count the number of subarrays // of the given array having odd Bitwise XOR function oddXorSubarray(a , n) { // Stores number of odd // numbers upto i-th index var odd = 0; // Stores number of required // subarrays starting from i-th index var c_odd = 0; // Store the required result var result = 0; // Find the number of subarrays having odd // Bitwise XOR values starting at 0-th index for (i = 0; i < n; i++) { // Check if current element is odd if (a[i] % 2 != 0) { odd = (odd == 0) ? 1 : 0; } // If the current value of odd is not // zero, increment c_odd by 1 if (odd != 0) { c_odd++; } } // Find the number of subarrays having odd // bitwise XOR value starting at ith index // and add to result for (i = 0; i < n; i++) { // Add c_odd to result result += c_odd; if (a[i] % 2 != 0) { c_odd = (n - i - c_odd); } } // Print the result document.write(result); } // Driver Code // Given array var arr = [ 1, 4, 7, 9, 10 ]; // Stores the size of the array var N = arr.length; oddXorSubarray(arr, N); // This code contributed by Rajput-Ji </script> |
8
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...