Skip to content
Related Articles

Related Articles

Count subarrays consisting of first K natural numbers in descending order
  • Difficulty Level : Medium
  • Last Updated : 08 Jan, 2021

Given an array arr[] of size N and an integer K, the task is to count the number of subarrays which consists of first K natural numbers in descending order.

Examples:

Input: arr[] = {1, 2, 3, 7, 9, 3, 2, 1, 8, 3, 2, 1}, K = 3
Output: 2
Explanation: The subarray {3, 2, 1} occurs twice in the array.

Input: arr = {100, 7, 6, 5, 4, 3, 2, 1, 100}, K = 6
Output: 1

 

Approach: The idea is to traverse the array and check if the required decreasing sequence is present starting from the current index or not. Follow the steps below to solve the problem:



  • Initialize two variables, temp to K, that checks the pattern, and count with 0, to store the count of total subarray matched.
  • Traverse the array arr[] using the variable i and do the following:
    • If arr[i] is equal to temp and the value of temp is 1, then increment the count by 1 and update temp as K. Else decrement temp by 1.
    • Otherwise, update temp as temp = K and if arr[i] is equal to K, decrement i by 1.
  • After the above steps, print the value of count as the result.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count subarray having
// the decreasing sequence K to 1
int CountSubarray(int arr[], int n,
                  int k)
{
    int temp = k, count = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // Check if required sequence
        // is present or not
        if (arr[i] == temp) {
            if (temp == 1) {
                count++;
                temp = k;
            }
            else
                temp--;
        }
 
        // Reset temp to k
        else {
            temp = k;
            if (arr[i] == k)
                i--;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 7, 9, 3,
                  2, 1, 8, 3, 2, 1 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 3;
 
    // Function Call
    cout << CountSubarray(arr, N, K);
 
    return 0;
}
 
// This code is contributed by Dharanendra L V

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
class GFG
{
 
  // Function to count subarray having
  // the decreasing sequence K to 1
  static int CountSubarray(int arr[], int n,
                           int k)
  {
    int temp = k, count = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
      // Check if required sequence
      // is present or not
      if (arr[i] == temp) {
        if (temp == 1) {
          count++;
          temp = k;
        }
        else
          temp--;
      }
 
      // Reset temp to k
      else {
        temp = k;
        if (arr[i] == k)
          i--;
      }
    }
 
    // Return the count
    return count;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int arr[] = { 1, 2, 3, 7, 9, 3,
                 2, 1, 8, 3, 2, 1 };
    int N = arr.length;
    int K = 3;
 
    // Function Call
    System.out.println(CountSubarray(arr, N, K));
  }
}
 
// This code is contributed by shivanisinghss2110

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to count subarray having
# the decreasing sequence K to 1
def CountSubarray(arr, n, k):
     
    temp = k
    count = 0
 
    # Traverse the array
    for i in range(n):
 
        # Check if required sequence
        # is present or not
        if (arr[i] == temp):
            if (temp == 1):
                count += 1
                temp = k
            else:
                   temp -= 1
 
        # Reset temp to k
        else:
            temp = k
             
            if (arr[i] == k):
                i -= 1
 
    # Return the count
    return count
 
# Driver Code
if __name__ == "__main__":
 
    arr = [ 1, 2, 3, 7, 9, 3,
            2, 1, 8, 3, 2, 1 ]
    N = len(arr)
    K = 3
 
    # Function Call
    print(CountSubarray(arr, N, K))
 
# This code is contributed by chitranayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
 
class GFG{
 
// Function to count subarray having
// the decreasing sequence K to 1
static int CountSubarray(int[] arr,
                         int n, int k)
{
    int temp = k, count = 0;
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // Check if required sequence
        // is present or not
        if (arr[i] == temp)
        {
            if (temp == 1)
            {
                count++;
                temp = k;
            }
            else
                temp--;
        }
 
        // Reset temp to k
        else
        {
            temp = k;
             
            if (arr[i] == k)
                i--;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver code
static public void Main()
{
    int[] arr = { 1, 2, 3, 7, 9, 3,
                  2, 1, 8, 3, 2, 1 };
    int N = arr.Length;
    int K = 3;
 
    // Function Call
    Console.Write(CountSubarray(arr, N, K));
}
}
 
// This code is contributed by Dharanendra L V

chevron_right


Output: 

2

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :