Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Count subarrays consisting of first K natural numbers in descending order

  • Difficulty Level : Medium
  • Last Updated : 13 Apr, 2021

Given an array arr[] of size N and an integer K, the task is to count the number of subarrays which consists of first K natural numbers in descending order.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {1, 2, 3, 7, 9, 3, 2, 1, 8, 3, 2, 1}, K = 3
Output: 2
Explanation: The subarray {3, 2, 1} occurs twice in the array.



Input: arr = {100, 7, 6, 5, 4, 3, 2, 1, 100}, K = 6
Output: 1

 

Approach: The idea is to traverse the array and check if the required decreasing sequence is present starting from the current index or not. Follow the steps below to solve the problem:

  • Initialize two variables, temp to K, that checks the pattern, and count with 0, to store the count of total subarray matched.
  • Traverse the array arr[] using the variable i and do the following:
    • If arr[i] is equal to temp and the value of temp is 1, then increment the count by 1 and update temp as K. Else decrement temp by 1.
    • Otherwise, update temp as temp = K and if arr[i] is equal to K, decrement i by 1.
  • After the above steps, print the value of count as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count subarray having
// the decreasing sequence K to 1
int CountSubarray(int arr[], int n,
                  int k)
{
    int temp = k, count = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // Check if required sequence
        // is present or not
        if (arr[i] == temp) {
            if (temp == 1) {
                count++;
                temp = k;
            }
            else
                temp--;
        }
 
        // Reset temp to k
        else {
            temp = k;
            if (arr[i] == k)
                i--;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 7, 9, 3,
                  2, 1, 8, 3, 2, 1 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 3;
 
    // Function Call
    cout << CountSubarray(arr, N, K);
 
    return 0;
}
 
// This code is contributed by Dharanendra L V

Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
  // Function to count subarray having
  // the decreasing sequence K to 1
  static int CountSubarray(int arr[], int n,
                           int k)
  {
    int temp = k, count = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
      // Check if required sequence
      // is present or not
      if (arr[i] == temp) {
        if (temp == 1) {
          count++;
          temp = k;
        }
        else
          temp--;
      }
 
      // Reset temp to k
      else {
        temp = k;
        if (arr[i] == k)
          i--;
      }
    }
 
    // Return the count
    return count;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int arr[] = { 1, 2, 3, 7, 9, 3,
                 2, 1, 8, 3, 2, 1 };
    int N = arr.length;
    int K = 3;
 
    // Function Call
    System.out.println(CountSubarray(arr, N, K));
  }
}
 
// This code is contributed by shivanisinghss2110

Python3




# Python3 program for the above approach
 
# Function to count subarray having
# the decreasing sequence K to 1
def CountSubarray(arr, n, k):
     
    temp = k
    count = 0
 
    # Traverse the array
    for i in range(n):
 
        # Check if required sequence
        # is present or not
        if (arr[i] == temp):
            if (temp == 1):
                count += 1
                temp = k
            else:
                   temp -= 1
 
        # Reset temp to k
        else:
            temp = k
             
            if (arr[i] == k):
                i -= 1
 
    # Return the count
    return count
 
# Driver Code
if __name__ == "__main__":
 
    arr = [ 1, 2, 3, 7, 9, 3,
            2, 1, 8, 3, 2, 1 ]
    N = len(arr)
    K = 3
 
    # Function Call
    print(CountSubarray(arr, N, K))
 
# This code is contributed by chitranayal

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count subarray having
// the decreasing sequence K to 1
static int CountSubarray(int[] arr,
                         int n, int k)
{
    int temp = k, count = 0;
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // Check if required sequence
        // is present or not
        if (arr[i] == temp)
        {
            if (temp == 1)
            {
                count++;
                temp = k;
            }
            else
                temp--;
        }
 
        // Reset temp to k
        else
        {
            temp = k;
             
            if (arr[i] == k)
                i--;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver code
static public void Main()
{
    int[] arr = { 1, 2, 3, 7, 9, 3,
                  2, 1, 8, 3, 2, 1 };
    int N = arr.Length;
    int K = 3;
 
    // Function Call
    Console.Write(CountSubarray(arr, N, K));
}
}
 
// This code is contributed by Dharanendra L V

Javascript




<script>
 
      // JavaScript program for the above approach
 
      // Function to count subarray having
      // the decreasing sequence K to 1
      function CountSubarray(arr, n, k) {
        var temp = k,
          count = 0;
 
        // Traverse the array
        for (var i = 0; i < n; i++)
        {
          // Check if required sequence
          // is present or not
          if (arr[i] == temp)
          {
            if (temp == 1) {
              count++;
              temp = k;
            } else temp--;
          }
 
          // Reset temp to k
          else {
            temp = k;
            if (arr[i] == k) i--;
          }
        }
 
        // Return the count
        return count;
      }
 
      // Driver Code
 
      var arr = [1, 2, 3, 7, 9, 3, 2, 1, 8, 3, 2, 1];
      var N = arr.length;
      var K = 3;
 
      // Function Call
      document.write(CountSubarray(arr, N, K));
       
</script>
Output: 
2

 

Time Complexity: O(N)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :