Skip to content
Related Articles

Related Articles

Improve Article

Count sub-sets that satisfy the given condition

  • Difficulty Level : Basic
  • Last Updated : 10 May, 2021
Geek Week

Given an array arr[] and an integer x, the task is to count the number of sub-sets of arr[] sum of all of whose sub-sets (individually) is divisible by x.
Examples: 
 

Input: arr[] = {2, 4, 3, 7}, x = 2 
Output:
All valid sub-sets are {2}, {4} and {2, 4} 
{2} => 2 is divisible by 2 
{4} => 4 is divisible by 2 
{2, 4} => 2, 4 and 6 are all divisible by 2
Input: arr[] = {2, 3, 4, 5}, x = 1 
Output: 15 
 

 

Approach: To choose a sub-set sum of all of whose sub-sets is divisible by x, all the elements of the sub-set must be divisible by x. So, 
 

  • Count all the elements from the array that is divisible by x and store them in a variable count.
  • Now, all possible sub-sets satisfying the condition will be 2count – 1

Below is the implementation of the above approach:
 



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
// Function to return the count of the required sub-sets
ll count(int arr[], int n, int x)
{
 
    // Every element is divisible by 1
    if (x == 1) {
        ll ans = pow(2, n) - 1;
        return ans;
    }
 
    // Count of elements which are divisible by x
    int count = 0;
    for (int i = 0; i < n; i++) {
        if (arr[i] % x == 0)
            count++;
    }
 
    ll ans = pow(2, count) - 1;
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 4, 3, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int x = 1;
    cout << count(arr, n, x) << endl;
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class solution
{
 
// Function to return the count of the required sub-sets
static long count(int arr[], int n, int x)
{
 
    // Every element is divisible by 1
    if (x == 1) {
        long ans = (long)Math.pow(2, n) - 1;
        return ans;
    }
 
    // Count of elements which are divisible by x
    int count = 0;
    for (int i = 0; i < n; i++) {
        if (arr[i] % x == 0)
            count++;
    }
 
    long ans = (long)Math.pow(2, count) - 1;
    return ans;
}
 
// Driver code
public static void main(String args[])
{
    int []arr = { 2, 4, 3, 5 };
    int n = arr.length;
    int x = 1;
    System.out.println(count(arr, n, x));
}
}

Python3




# Python3 implementation of the approach
 
# Function to return the count of
# the required sub-sets
def count(arr, n, x) :
 
    # Every element is divisible by 1
    if (x == 1) :
        ans = pow(2, n) - 1
        return ans;
     
    # Count of elements which are
    # divisible by x
    count = 0
    for i in range(n) :
        if (arr[i] % x == 0) :
            count += 1
 
    ans = pow(2, count) - 1
    return ans
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 2, 4, 3, 5 ]
    n = len(arr)
    x = 1
    print(count(arr, n, x))
 
# This code is contributed by Ryuga

C#




//C# implementation of the approach
 
using System;
 
public class GFG{
     
// Function to return the count of the required sub-sets
static double count(int []arr, int n, int x)
{
    double ans=0;
    // Every element is divisible by 1
    if (x == 1) {
        ans = (Math.Pow(2, n) - 1);
        return ans;
    }
 
    // Count of elements which are divisible by x
    int count = 0;
    for (int i = 0; i < n; i++) {
        if (arr[i] % x == 0)
            count++;
    }
 
    ans = (Math.Pow(2, count) - 1);
    return ans;
}
 
// Driver code
     
    static public void Main (){
     
    int []arr = { 2, 4, 3, 5 };
    int n = arr.Length;
    int x = 1;
    Console.WriteLine(count(arr, n, x));
    }
}

PHP




<?php
// PHP  implementation of the approach
 
// Function to return the count of the required sub-sets
function count_t($arr, $n, $x)
{
    // Every element is divisible by 1
    if ($x == 1) {
    $ans = pow(2, $n) - 1;
        return $ans;
    }
 
    // Count of elements which are divisible by x
    $count = 0;
    for ($i = 0; $i < $n; $i++) {
        if ($arr[$i] % $x == 0)
            $count++;
    }
 
    $ans = pow(2, $count) - 1;
    return $ans;
}
 
// Driver code
 
    $arr = array( 2, 4, 3, 5 );
    $n = sizeof($arr) / sizeof($arr[0]);
    $x = 1;
    echo  count_t($arr, $n, $x);
     
#This code is contributed by akt_mit
?>

Javascript




<script>
 
    // Javascript implementation of the approach
     
    // Function to return the count of
    // the required sub-sets
    function count(arr, n, x)
    {
        let ans=0;
        // Every element is divisible by 1
        if (x == 1) {
            ans = (Math.pow(2, n) - 1);
            return ans;
        }
 
        // Count of elements which are divisible by x
        let count = 0;
        for (let i = 0; i < n; i++) {
            if (arr[i] % x == 0)
                count++;
        }
 
        ans = (Math.pow(2, count) - 1);
        return ans;
    }
     
    let arr = [ 2, 4, 3, 5 ];
    let n = arr.length;
    let x = 1;
    document.write(count(arr, n, x));
     
</script>
Output: 
15

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :