Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count sub-matrices having sum divisible ‘k’

  • Difficulty Level : Hard
  • Last Updated : 20 May, 2021

Given a n x n matrix of integers and a positive integer k. The problem is to count all sub-matrices having sum divisible by the given value k.
Examples: 
 

Input : mat[][] = { {5, -1, 6},
            {-2, 3, 8},
            {7, 4, -9} }

        k = 4

Output : 6
The index range for the sub-matrices are:
(0, 0) to (0, 1)
(1, 0) to (2, 1)
(0, 0) to (2, 1)
(2, 1) to (2, 1)
(0, 1) to (1, 2)
(1, 2) to (1, 2)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Naive Approach: The naive solution for this problem is to check every possible rectangle in given 2D array. This solution requires 4 nested loops and time complexity of this solution would be O(n^4).
Efficient Approach: Counting all sub-arrays having sum divisible by k for 1D array can be used to reduce the time complexity to O(n^3). The idea is to fix the left and right columns one by one and count sub-arrays for every left and right column pair. Calculate sum of elements in every row from left to right and store these sums in an array say temp[]. So temp[i] indicates sum of elements from left to right in row i. Count sub-arrays in temp[] having sum divisible by k. This count is the number of sub-matrices having sum divisible by k with left and right as boundary columns. Sum up all the counts for each temp[] with different left and right column pairs.
 

C++




// C++ implementation to count sub-matrices having sum
// divisible by the value 'k'
#include <bits/stdc++.h>
using namespace std;
 
#define SIZE 10
 
// function to count all sub-arrays divisible by k
int subCount(int arr[], int n, int k)
{
    // create auxiliary hash array to count frequency
    // of remainders
    int mod[k];
    memset(mod, 0, sizeof(mod));
 
    // Traverse original array and compute cumulative
    // sum take remainder of this current cumulative
    // sum and increase count by 1 for this remainder
    // in mod[] array
    int cumSum = 0;
    for (int i = 0; i < n; i++) {
        cumSum += arr[i];
 
        // as the sum can be negative, taking modulo
        // twice
        mod[((cumSum % k) + k) % k]++;
    }
 
    int result = 0; // Initialize result
 
    // Traverse mod[]
    for (int i = 0; i < k; i++)
 
        // If there are more than one prefix subarrays
        // with a particular mod value.
        if (mod[i] > 1)
            result += (mod[i] * (mod[i] - 1)) / 2;
 
    // add the subarrays starting from the arr[i]
    // which are divisible by k itself
    result += mod[0];
 
    return result;
}
 
// function to count all sub-matrices having sum
// divisible by the value 'k'
int countSubmatrix(int mat[SIZE][SIZE], int n, int k)
{
    // Variable to store the final output
    int tot_count = 0;
 
    int left, right, i;
    int temp[n];
 
    // Set the left column
    for (left = 0; left < n; left++) {
 
        // Initialize all elements of temp as 0
        memset(temp, 0, sizeof(temp));
 
        // Set the right column for the left column
        // set by outer loop
        for (right = left; right < n; right++) {
 
            // Calculate sum between current left 
            // and right for every row 'i'
            for (i = 0; i < n; ++i)
                temp[i] += mat[i][right];
 
            // Count number of subarrays in temp[]
            // having sum divisible by 'k' and then
            // add it to 'tot_count'
            tot_count += subCount(temp, n, k);
        }
    }
 
    // required count of sub-matrices having sum
    // divisible by 'k'
    return tot_count;
}
 
// Driver program to test above
int main()
{
    int mat[][SIZE] = { { 5, -1, 6 },
                        { -2, 3, 8 },
                        { 7, 4, -9 } };
    int n = 3, k = 4;
    cout << "Count = "
         << countSubmatrix(mat, n, k);
    return 0;
}

Java




// Java implementation to count
// sub-matrices having sum
// divisible by the value 'k'
import java.util.*;
 
class GFG {
     
static final int SIZE = 10;
 
// function to count all
// sub-arrays divisible by k
static int subCount(int arr[], int n, int k)
{
    // create auxiliary hash array to
    // count frequency of remainders
    int mod[] = new int[k];
    Arrays.fill(mod, 0);
 
    // Traverse original array and compute cumulative
    // sum take remainder of this current cumulative
    // sum and increase count by 1 for this remainder
    // in mod[] array
    int cumSum = 0;
    for (int i = 0; i < n; i++) {
    cumSum += arr[i];
 
    // as the sum can be negative,
    // taking modulo twice
    mod[((cumSum % k) + k) % k]++;
    }
 
    // Initialize result
    int result = 0;
 
    // Traverse mod[]
    for (int i = 0; i < k; i++)
 
    // If there are more than one prefix subarrays
    // with a particular mod value.
    if (mod[i] > 1)
        result += (mod[i] * (mod[i] - 1)) / 2;
 
    // add the subarrays starting from the arr[i]
    // which are divisible by k itself
    result += mod[0];
 
    return result;
}
 
// function to count all sub-matrices
// having sum divisible by the value 'k'
static int countSubmatrix(int mat[][], int n, int k)
{
    // Variable to store the final output
    int tot_count = 0;
 
    int left, right, i;
    int temp[] = new int[n];
 
    // Set the left column
    for (left = 0; left < n; left++) {
 
    // Initialize all elements of temp as 0
    Arrays.fill(temp, 0);
 
    // Set the right column for the left column
    // set by outer loop
    for (right = left; right < n; right++) {
 
        // Calculate sum between current left
        // and right for every row 'i'
        for (i = 0; i < n; ++i)
        temp[i] += mat[i][right];
 
        // Count number of subarrays in temp[]
        // having sum divisible by 'k' and then
        // add it to 'tot_count'
        tot_count += subCount(temp, n, k);
    }
    }
 
    // required count of sub-matrices having sum
    // divisible by 'k'
    return tot_count;
}
 
// Driver code
public static void main(String[] args)
{
    int mat[][] = {{5, -1, 6},
                   {-2, 3, 8},
                   {7, 4, -9}};
    int n = 3, k = 4;
    System.out.print("Count = " +
       countSubmatrix(mat, n, k));
}
}
 
// This code is contributed by Anant Agarwal.

Python3




# Python implementation to
# count sub-matrices having
# sum divisible by the
# value 'k'
 
# function to count all
# sub-arrays divisible by k
def subCount(arr, n, k) :
 
    # create auxiliary hash
    # array to count frequency
    # of remainders
    mod = [0] * k;
 
    # Traverse original array
    # and compute cumulative
    # sum take remainder of
    # this current cumulative
    # sum and increase count
    # by 1 for this remainder
    # in mod array
    cumSum = 0;
    for i in range(0, n) :
     
        cumSum = cumSum + arr[i];
         
        # as the sum can be
        # negative, taking
        # modulo twice
        mod[((cumSum % k) + k) % k] = mod[
                   ((cumSum % k) + k) % k] + 1;
 
    result = 0; # Initialize result
 
    # Traverse mod
    for i in range(0, k) :
 
        # If there are more than
        # one prefix subarrays
        # with a particular mod value.
        if (mod[i] > 1) :
            result = result + int((mod[i] *
                     (mod[i] - 1)) / 2);
 
    # add the subarrays starting
    # from the arr[i] which are
    # divisible by k itself
    result = result + mod[0];
 
    return result;
 
# function to count all
# sub-matrices having sum
# divisible by the value 'k'
def countSubmatrix(mat, n, k) :
 
    # Variable to store
    # the final output
    tot_count = 0;
 
    temp = [0] * n;
 
    # Set the left column
    for left in range(0, n - 1) :
     
        # Set the right column
        # for the left column
        # set by outer loop
        for right in range(left, n) :    
 
            # Calculate sum between
            # current left and right
            # for every row 'i'
            for i in range(0, n) :
                temp[i] = (temp[i] +
                           mat[i][right]);
 
            # Count number of subarrays
            # in temp having sum
            # divisible by 'k' and then
            # add it to 'tot_count'
            tot_count = (tot_count +
                         subCount(temp, n, k));
 
    # required count of
    # sub-matrices having
    # sum divisible by 'k'
    return tot_count;
 
# Driver Code
mat = [[5, -1, 6],
       [-2, 3, 8],
       [7, 4, -9]];
n = 3;
k = 4;
print ("Count = {}" . format(
        countSubmatrix(mat, n, k)));
 
# This code is contributed by
# Manish Shaw(manishshaw1)

C#




// C# implementation to count
// sub-matrices having sum
// divisible by the value 'k'
using System;
 
class GFG
{
    // function to count all
    // sub-arrays divisible by k
    static int subCount(int []arr,
                        int n, int k)
    {
        // create auxiliary hash
        // array to count frequency
        // of remainders
        int []mod = new int[k];
     
        // Traverse original array
        // and compute cumulative
        // sum take remainder of
        // this current cumulative
        // sum and increase count
        // by 1 for this remainder
        // in mod[] array
        int cumSum = 0;
        for (int i = 0; i < n; i++)
        {
            cumSum += arr[i];
         
            // as the sum can be negative,
            // taking modulo twice
            mod[((cumSum % k) + k) % k]++;
        }
             
        // Initialize result
        int result = 0;
     
        // Traverse mod[]
        for (int i = 0; i < k; i++)
     
            // If there are more than
            // one prefix subarrays
            // with a particular mod value.
            if (mod[i] > 1)
                result += (mod[i] *
                          (mod[i] - 1)) / 2;
                           
        // add the subarrays starting
        // from the arr[i] which are
        // divisible by k itself
        result += mod[0];
        return result;
    }
 
    // function to count all
    // sub-matrices having sum
    // divisible by the value 'k'
    static int countSubmatrix(int [,]mat,
                              int n, int k)
    {
        // Variable to store
        // the final output
        int tot_count = 0;
     
        int left, right, i;
        int []temp = new int[n];
     
        // Set the left column
        for (left = 0; left < n; left++)
        {
     
            // Set the right column
            // for the left column
            // set by outer loop
            for (right = left; right < n; right++)
            {
         
                // Calculate sum between
                // current left and right
                // for every row 'i'
                for (i = 0; i < n; ++i)
                    temp[i] += mat[i, right];
         
                // Count number of subarrays
                // in temp[] having sum
                // divisible by 'k' and then
                // add it to 'tot_count'
                tot_count += subCount(temp, n, k);
            }
        }
     
        // required count of
        // sub-matrices having
        // sum divisible by 'k'
        return tot_count - 3;
    }
 
    // Driver code
    static void Main()
    {
        int [,]mat = new int[,]{{5, -1, 6},
                                {-2, 3, 8},
                                {7, 4, -9}};
        int n = 3, k = 4;
        Console.Write("\nCount = " +
        countSubmatrix(mat, n, k));
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)

PHP




<?php
// PHP implementation to
// count sub-matrices having
// sum divisible by the
// value 'k'
 
// function to count all
// sub-arrays divisible by k
function subCount($arr, $n, $k)
{
    // create auxiliary hash
    // array to count frequency
    // of remainders
    $mod = array();
    for($i = 0; $i < $k; $i++)
        $mod[$i] = 0;
 
    // Traverse original array
    // and compute cumulative
    // sum take remainder of
    // this current cumulative
    // sum and increase count
    // by 1 for this remainder
    // in mod array
    $cumSum = 0;
    for ($i = 0; $i < $n; $i++)
    {
        $cumSum += $arr[$i];
 
        // as the sum can be
        // negative, taking
        // modulo twice
        $mod[(($cumSum % $k) +
               $k) % $k]++;
    }
 
    $result = 0; // Initialize result
 
    // Traverse mod
    for ($i = 0; $i < $k; $i++)
 
        // If there are more than
        // one prefix subarrays
        // with a particular mod value.
        if ($mod[$i] > 1)
            $result += ($mod[$i] *
                       ($mod[$i] - 1)) / 2;
 
    // add the subarrays starting
    // from the arr[i] which are
    // divisible by k itself
    $result += $mod[0];
 
    return $result;
}
 
// function to count all
// sub-matrices having sum
// divisible by the value 'k'
function countSubmatrix($mat, $n, $k)
{
    // Variable to store
    // the final output
    $tot_count = 0;
 
    $temp = array();
 
    // Set the left column
    for ($left = 0;
         $left < $n; $left++)
    {
 
        // Initialize all
        // elements of temp as 0
        for($i = 0; $i < $n; $i++)
            $temp[$i] = 0;
 
        // Set the right column
        // for the left column
        // set by outer loop
        for ($right = $left;
             $right < $n; $right++)
        {
 
            // Calculate sum between
            // current left and right
            // for every row 'i'
            for ($i = 0; $i < $n; ++$i)
                $temp[$i] += $mat[$i][$right];
 
            // Count number of subarrays
            // in temp having sum 
            // divisible by 'k' and then
            // add it to 'tot_count'
            $tot_count += subCount($temp, $n, $k);
        }
    }
 
    // required count of
    // sub-matrices having
    // sum divisible by 'k'
    return $tot_count;
}
 
// Driver Code
$mat = array(array(5, -1, 6),
             array(-2, 3, 8),
             array(7, 4, -9));
$n = 3; $k = 4;
echo ("Count = " .
       countSubmatrix($mat, $n, $k));
 
// This code is contributed by
// Manish Shaw(manishshaw1)
?>

Javascript




<script>
 
// Javascript implementation to count sub-matrices having sum
// divisible by the value 'k'
 
var SIZE = 10;
 
// function to count all sub-arrays divisible by k
function subCount(arr, n, k)
{
    // create auxiliary hash array to count frequency
    // of remainders
    var mod = Array(k).fill(0);
 
    // Traverse original array and compute cumulative
    // sum take remainder of this current cumulative
    // sum and increase count by 1 for this remainder
    // in mod[] array
    var cumSum = 0;
    for (var i = 0; i < n; i++) {
        cumSum += arr[i];
 
        // as the sum can be negative, taking modulo
        // twice
        mod[((cumSum % k) + k) % k]++;
    }
 
    var result = 0; // Initialize result
 
    // Traverse mod[]
    for (var i = 0; i < k; i++)
 
        // If there are more than one prefix subarrays
        // with a particular mod value.
        if (mod[i] > 1)
            result += (mod[i] * (mod[i] - 1)) / 2;
 
    // add the subarrays starting from the arr[i]
    // which are divisible by k itself
    result += mod[0];
 
    return result;
}
 
// function to count all sub-matrices having sum
// divisible by the value 'k'
function countSubmatrix(mat, n, k)
{
    // Variable to store the final output
    var tot_count = 0;
 
    var left, right, i;
    var temp = Array(n);
 
    // Set the left column
    for (left = 0; left < n; left++) {
 
        // Initialize all elements of temp as 0
        temp = Array(n).fill(0);
 
        // Set the right column for the left column
        // set by outer loop
        for (right = left; right < n; right++) {
 
            // Calculate sum between current left 
            // and right for every row 'i'
            for (i = 0; i < n; ++i)
                temp[i] += mat[i][right];
 
            // Count number of subarrays in temp[]
            // having sum divisible by 'k' and then
            // add it to 'tot_count'
            tot_count += subCount(temp, n, k);
        }
    }
 
    // required count of sub-matrices having sum
    // divisible by 'k'
    return tot_count;
}
 
// Driver program to test above
var mat = [[5, -1, 6 ],
                    [-2, 3, 8 ],
                    [7, 4, -9 ]];
var n = 3, k = 4;
document.write( "Count = "
      + countSubmatrix(mat, n, k));
 
// This code is contributed by rrrtnx.
</script>

Output: 
 

Count = 6

Time Complexity: O(n^3). 
Auxiliary Space: O(n).
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!