Given a number n, the task is to count all rotations of the given number which are odd and even.
Examples:
Input: n = 1234 Output: Odd = 2, Even = 2 Total rotations: 1234, 2341, 3412, 4123 Odd rotations: 2341 and 4123 Even rotations: 1234 and 3412 Input: n = 246 Output: Odd = 0, Even = 3
Efficient Approach: For large numbers, it is difficult to rotate and check whether it is odd or not for every rotation. Hence, in this approach, check the count of odd digits and even digits present in the number. These will be the answer to this problem.
Below is the implementation of the above approach:
Implementation:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to count of all rotations // which are odd and even void countOddRotations( int n) { int odd_count = 0, even_count = 0; do { int digit = n % 10; if (digit % 2 == 1) odd_count++; else even_count++; n = n / 10; } while (n != 0); cout << "Odd = " << odd_count << endl; cout << "Even = " << even_count << endl; } // Driver Code int main() { int n = 1234; countOddRotations(n); } |
Java
// Java implementation of the above approach class Solution { // Function to count of all rotations // which are odd and even static void countOddRotations( int n) { int odd_count = 0 , even_count = 0 ; do { int digit = n % 10 ; if (digit % 2 == 1 ) odd_count++; else even_count++; n = n / 10 ; } while (n != 0 ); System.out.println( "Odd = " + odd_count); System.out.println( "Even = " + even_count); } public static void main(String[] args) { int n = 1234 ; countOddRotations(n); } } |
Python3
# Python implementation of the above approach # Function to count of all rotations # which are odd and even def countOddRotations(n): odd_count = 0 ; even_count = 0 while n ! = 0 : digit = n % 10 if digit % 2 = = 0 : odd_count + = 1 else : even_count + = 1 n = n / / 10 print ( "Odd =" , odd_count) print ( "Even =" , even_count) # Driver code n = 1234 countOddRotations(n) # This code is contributed by Shrikant13 |
C#
// CSharp implementation of the above approach using System; class Solution { // Function to count of all rotations // which are odd and even static void countOddRotations( int n) { int odd_count = 0, even_count = 0; do { int digit = n % 10; if (digit % 2 == 1) odd_count++; else even_count++; n = n / 10; } while (n != 0); Console.WriteLine( "Odd = " + odd_count); Console.WriteLine( "Even = " + even_count); } public static void Main() { int n = 1234; countOddRotations(n); } } |
PHP
<?php // PHP implementation of the above approach // Function to count of all rotations // which are odd and even function countOddRotations( $n ) { $odd_count = 0; $even_count = 0; do { $digit = $n % 10; if ( $digit % 2 == 1) $odd_count ++; else $even_count ++; $n = (int)( $n / 10); } while ( $n != 0); echo "Odd = " , $odd_count , "\n" ; echo "Even = " , $even_count , "\n" ; } // Driver Code $n = 1234; countOddRotations( $n ); // This code is contributed by ajit.. ?> |
Javascript
<script> // Javascript implementation of the above approach // Function to count of all rotations // which are odd and even function countOddRotations(n) { var odd_count = 0, even_count = 0; do { var digit = n % 10; if (digit % 2 == 1) odd_count++; else even_count++; n = parseInt(n / 10); } while (n != 0); document.write( "Odd = " + odd_count + "<br>" ); document.write( "Even = " + even_count + "<br>" ); } // Driver Code var n = 1234; countOddRotations(n); // This code is contributed by rutvik_56. </script> |
Odd = 2 Even = 2
Time Complexity: O(n)
Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer Complete Interview Preparation Course.