Count right angled triangles in a matrix having two of its sides parallel to sides of the matrix

Given a binary matrix arr[][] of dimensions N * M , the task is to count the number of right-angled triangles that can be formed by joining the cells containing the value 1 such that the triangles must have any two of its sides parallel to the sides of the rectangle.

Examples:

Input: arr[][] = {{0, 1, 0}, {1, 1, 1}, {0, 1, 0}}
Output: 4
Explanation: Right-angled triangles that can be formed are (a[1][1], a[1][0], a[0][1]), (a[1][1], a[2][1], a[1][0]), (a[1][1], a[1][2], a[0][1]) and (a[1][1], a[1][2], a[2][1])

Input: arr[][] = {{1, 0, 1, 0}, {0, 1, 1, 1}, {1, 0, 1, 0}, {0, 1, 0, 1}}
Output: 16

Approach: The idea is to traverse the given grid and store the count of 1s present in each row and each column in auxiliary arrays row[] and col[] respectively. Then for each cell in the grid arr[][], if arr[i][j] is 1, then the total number of right-angled triangles formed can be calculated by (row[i] – 1)*(col[j] – 1) for each cell. Follow the steps below to solve the problem:



(row[i] – 1)*(col[j] – 1)

Below is the implementation for the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the right-angled
// traingle in the given grid a[][]
int numberOfTriangle(
    vector<vector<int> >& a)
{
    int N = a.size();
    int M = a[0].size();
 
    // Stores the count of 1s for
    // each row[] and column[]
    int rows[N] = { 0 };
    int columns[M] = { 0 };
 
    // Find the number of 1s in
    // each of the rows[0, N - 1]
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < M; ++j) {
 
            // Increment row[i]
            if (a[i][j] == 1) {
                rows[i]++;
            }
        }
    }
 
    // Find the number of 1s in
    // each of the columns[0, N - 1]
    for (int i = 0; i < M; ++i) {
 
        for (int j = 0; j < N; ++j) {
 
            // Increment columns[i]
            if (a[j][i] == 1) {
                columns[i]++;
            }
        }
    }
 
    // Stores the count of triangles
    int answer = 0;
 
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < M; ++j) {
 
            // If current cell has value 1
            if (a[i][j] == 1) {
 
                // Update the answer
                answer += (rows[i] - 1)
                          * (columns[j] - 1);
            }
        }
 
        
    }
   // Return the count
        return answer;
}
 
 
// Driver Code
int main()
{
    // Given grid arr[][]
    vector<vector<int> > arr;
 
    arr = { { 1, 0, 1, 0 },
            { 0, 1, 1, 1 },
            { 1, 0, 1, 0 },
            { 0, 1, 0, 1 } };
 
    // Function Call
    cout << numberOfTriangle(arr);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the
// above approach
import java.util.*;
class GFG{
 
// Function to count the right-angled
// traingle in the given grid a[][]
static int numberOfTriangle(int[][] a)
{
  int N = a.length;
  int M = a[0].length;
 
  // Stores the count of 1s for
  // each row[] and column[]
  int []rows = new int[N];
  int []columns = new int[M];
 
  // Find the number of 1s in
  // each of the rows[0, N - 1]
  for (int i = 0; i < N; ++i)
  {
    for (int j = 0; j < M; ++j)
    {
      // Increment row[i]
      if (a[i][j] == 1)
      {
        rows[i]++;
      }
    }
  }
 
  // Find the number of 1s in
  // each of the columns[0, N - 1]
  for (int i = 0; i < M; ++i)
  {
    for (int j = 0; j < N; ++j)
    {
      // Increment columns[i]
      if (a[j][i] == 1)
      {
        columns[i]++;
      }
    }
  }
 
  // Stores the count
  // of triangles
  int answer = 0;
 
  for (int i = 0; i < N; i++)
  {
    for (int j = 0; j < M; ++j)
    {
      // If current cell
      // has value 1
      if (a[i][j] == 1)
      {
        // Update the answer
        answer += (rows[i] - 1) *
                  (columns[j] - 1);
      }
    }
  }
 
  // Return the count
  return answer;
}
 
// Driver Code
public static void main(String[] args)
{
  // Given grid arr[][]
  int [][]arr = {{1, 0, 1, 0},
                 {0, 1, 1, 1},
                 {1, 0, 1, 0},
                 {0, 1, 0, 1}};
 
  // Function Call
  System.out.print(numberOfTriangle(arr));
}
}
 
// This code is contributed by gauravrajput1
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to count the right-angled
# traingle in the given grid a[][]
def numberOfTriangle(a):
     
    N = len(a)
    M = len(a[0])
 
    # Stores the count of 1s for
    # each row[] and column[]
    rows = [0] * N
    columns = [0] * M
 
    # Find the number of 1s in
    # each of the rows[0, N - 1]
    for i in range(N):
        for j in range(M):
 
            # Increment row[i]
            if (a[i][j] == 1):
                rows[i] += 1
 
    # Find the number of 1s in
    # each of the columns[0, N - 1]
    for i in range(M):
        for j in range(N):
 
            # Increment columns[i]
            if (a[j][i] == 1):
                columns[i] += 1
 
    # Stores the count of triangles
    answer = 0
 
    for i in range(N):
        for j in range(M):
 
            # If current cell has value 1
            if (a[i][j] == 1):
 
                # Update the answer
                answer += ((rows[i] - 1) *
                      (columns[j] - 1))
 
    # Return the count
    return answer
 
# Driver Code
if __name__ == '__main__':
     
    # Given grid arr
    arr = [ [ 1, 0, 1, 0 ],
            [ 0, 1, 1, 1 ],
            [ 1, 0, 1, 0 ],
            [ 0, 1, 0, 1 ] ]
 
    # Function call
    print(numberOfTriangle(arr))
 
# This code is contributed by mohit kumar 29
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the
// above approach
using System;
 
class GFG{
 
// Function to count the right-angled
// traingle in the given grid[,]a
static int numberOfTriangle(int[,] a)
{
  int N = a.GetLength(0);
  int M = a.GetLength(1);
 
  // Stores the count of 1s for
  // each []row and column[]
  int []rows = new int[N];
  int []columns = new int[M];
 
  // Find the number of 1s in
  // each of the rows[0, N - 1]
  for(int i = 0; i < N; ++i)
  {
    for(int j = 0; j < M; ++j)
    {
       
      // Increment row[i]
      if (a[i, j] == 1)
      {
        rows[i]++;
      }
    }
  }
 
  // Find the number of 1s in
  // each of the columns[0, N - 1]
  for(int i = 0; i < M; ++i)
  {
    for(int j = 0; j < N; ++j)
    {
       
      // Increment columns[i]
      if (a[j, i] == 1)
      {
        columns[i]++;
      }
    }
  }
 
  // Stores the count
  // of triangles
  int answer = 0;
 
  for(int i = 0; i < N; i++)
  {
    for(int j = 0; j < M; ++j)
    {
       
      // If current cell
      // has value 1
      if (a[i, j] == 1)
      {
         
        // Update the answer
        answer += (rows[i] - 1) *
               (columns[j] - 1);
      }
    }
  }
 
  // Return the count
  return answer;
}
 
// Driver Code
public static void Main(String[] args)
{
   
  // Given grid [,]arr
  int [,]arr = { { 1, 0, 1, 0 },
                 { 0, 1, 1, 1 },
                 { 1, 0, 1, 0 },
                 { 0, 1, 0, 1 } };
 
  // Function Call
  Console.Write(numberOfTriangle(arr));
}
}
 
// This code is contributed by Amit Katiyar
chevron_right

Output
16




Time Complexity: O(N*M) where NxM is the dimensions of the given grid.
Space Complexity: O(N*M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :