Count quadruples (i, j, k, l) in an array such that i < j < k < l and arr[i] = arr[k] and arr[j] = arr[l]
Given an array arr[] consisting of N integers, the task is to count the number of tuples (i, j, k, l) from the given array such that i < j < k < l and arr[i] = arr[k] and arr[j] = arr[l].
Examples:
Input: arr[] = {1, 2, 1, 2, 2, 2}
Output: 4
Explanation:
The tuples which satisfy the given condition are:
1) (0, 1, 2, 3) since arr[0] = arr[2] = 1 and arr[1] = arr[3] = 2
2) (0, 1, 2, 4) since arr[0] = arr[2] = 1 and arr[1] = arr[4] = 2
3) (0, 1, 2, 5) since arr[0] = arr[2] = 1 and arr[1] = arr[5] = 2
4) (1, 3, 4, 5) since arr[1] = arr[4] = 2 and arr[3] = arr[5] = 2Input: arr[] = {2, 5, 2, 2, 5, 4}
Output: 2
Naive Approach: The simplest approach is to generate all the possible quadruples and check if the given condition holds true. If found to be true, then increase the final count. Print the final count obtained.
Time Complexity: O(N4)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to use Hashing. Below are the steps:
- For each index j iterate to find a pair of indices (j, l) such that arr[j] = arr[l] and j < l.
- Use a hash table to keep count of the frequency of all array elements present in the indices [0, j – 1].
- While traversing through index j to l, simply add the frequency of each element between j and l to the final count.
- Repeat this process for every such possible pair of indices (j, l).
- Print the total count of quadruples after the above steps.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count total number // of required tuples int countTuples( int arr[], int N) { int ans = 0, val = 0; // Initialize unordered map unordered_map< int , int > freq; for ( int j = 0; j < N - 2; j++) { val = 0; // Find the pairs (j, l) such // that arr[j] = arr[l] and j < l for ( int l = j + 1; l < N; l++) { // elements are equal if (arr[j] == arr[l]) { // Update the count ans += val; } // Add the frequency of // arr[l] to val val += freq[arr[l]]; } // Update the frequency of // element arr[j] freq[arr[j]]++; } // Return the answer return ans; } // Driver code int main() { // Given array arr[] int arr[] = { 1, 2, 1, 2, 2, 2 }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call cout << countTuples(arr, N); return 0; } |
Java
// Java program for // the above approach import java.util.*; class GFG{ // Function to count total number // of required tuples static int countTuples( int arr[], int N) { int ans = 0 , val = 0 ; // Initialize unordered map HashMap<Integer, Integer> freq = new HashMap<Integer, Integer>(); for ( int j = 0 ; j < N - 2 ; j++) { val = 0 ; // Find the pairs (j, l) such // that arr[j] = arr[l] and j < l for ( int l = j + 1 ; l < N; l++) { // elements are equal if (arr[j] == arr[l]) { // Update the count ans += val; } // Add the frequency of // arr[l] to val if (freq.containsKey(arr[l])) val += freq.get(arr[l]); } // Update the frequency of // element arr[j] if (freq.containsKey(arr[j])) { freq.put(arr[j], freq.get(arr[j]) + 1 ); } else { freq.put(arr[j], 1 ); } } // Return the answer return ans; } // Driver code public static void main(String[] args) { // Given array arr[] int arr[] = { 1 , 2 , 1 , 2 , 2 , 2 }; int N = arr.length; // Function Call System.out.print(countTuples(arr, N)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program for the above approach # Function to count total number # of required tuples def countTuples(arr, N): ans = 0 val = 0 # Initialize unordered map freq = {} for j in range (N - 2 ): val = 0 # Find the pairs (j, l) such # that arr[j] = arr[l] and j < l for l in range (j + 1 , N): # Elements are equal if (arr[j] = = arr[l]): # Update the count ans + = val # Add the frequency of # arr[l] to val if arr[l] in freq: val + = freq[arr[l]] # Update the frequency of # element arr[j] freq[arr[j]] = freq.get(arr[j], 0 ) + 1 # Return the answer return ans # Driver code if __name__ = = '__main__' : # Given array arr[] arr = [ 1 , 2 , 1 , 2 , 2 , 2 ] N = len (arr) # Function call print (countTuples(arr, N)) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to count total number // of required tuples static int countTuples( int []arr, int N) { int ans = 0, val = 0; // Initialize unordered map Dictionary< int , int > freq = new Dictionary< int , int >(); for ( int j = 0; j < N - 2; j++) { val = 0; // Find the pairs (j, l) such // that arr[j] = arr[l] and j < l for ( int l = j + 1; l < N; l++) { // Elements are equal if (arr[j] == arr[l]) { // Update the count ans += val; } // Add the frequency of // arr[l] to val if (freq.ContainsKey(arr[l])) val += freq[arr[l]]; } // Update the frequency of // element arr[j] if (freq.ContainsKey(arr[j])) { freq[arr[j]] = freq[arr[j]] + 1; } else { freq.Add(arr[j], 1); } } // Return the answer return ans; } // Driver code public static void Main(String[] args) { // Given array []arr int []arr = { 1, 2, 1, 2, 2, 2 }; int N = arr.Length; // Function call Console.Write(countTuples(arr, N)); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // Javascript program for the above approach // Function to count total number // of required tuples function countTuples(arr, N) { var ans = 0, val = 0; // Initialize unordered map var freq = new Map(); for ( var j = 0; j < N - 2; j++) { val = 0; // Find the pairs (j, l) such // that arr[j] = arr[l] and j < l for ( var l = j + 1; l < N; l++) { // Elements are equal if (arr[j] == arr[l]) { // Update the count ans += val; } // Add the frequency of // arr[l] to val if (freq.has(arr[l])) { val += freq.get(arr[l]); } } // Update the frequency of // element arr[j] if (freq.has(arr[j])) { freq.set(arr[j], freq.get(arr[j]) + 1); } else { freq.set(arr[j], 1); } } // Return the answer return ans; } // Driver code // Given array arr[] var arr = [ 1, 2, 1, 2, 2, 2 ]; var N = arr.length; // Function Call document.write(countTuples(arr, N)); // This code is contributed by rutvik_56 </script> |
4
Time Complexity: O(N2)
Auxiliary Space: O(N)
Please Login to comment...