Related Articles

Related Articles

Count prime pairs whose difference is also a Prime Number
  • Last Updated : 16 Nov, 2020

Given an integer N, the task is to count the number of pairs of prime numbers in the range [1, N] such that the difference between elements of each pair is also a prime number.

Examples:

Input: N = 5 
Output:
Explanations: 
Pair of prime numbers in the range [1, 5] whose difference between elements is also a prime number are: 
(2, 5) = 3 (Prime number) 
(3, 5) = 2 (Prime number) 
Therefore, the count of pairs of the prime numbers whose difference is also a prime number is 2. 

Input: N = 11 
Output: 4

 

Naive Approach: The simplest approach to solve this problem is to generate all possible pairs of the elements in the range [1, N] and for each pair, check if both the elements and the difference between both the elements of the pair is a prime number or not. If found to be true then increment the count. Finally, print the count.



Time Complexity: O(N2 * √N) 
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is based on the following observations:

Odd number – Even Number = Odd Number 
Odd number – Odd number = Even number 
2 is the only even prime number. 
Therefore, the problem reduces to check only for those pairs of prime numbers whose difference between the elements of the pair is equal to 2. 
 

Follow the steps below to solve the problem:

  • Initialize a variable, say cntPairs to store the count of pairs of prime numbers such that the difference between element of each pair is also a prime number.
  • Initialize an array, say sieve[] to check if a number in the range [1, N] is a prime number or not.
  • Find all the prime numbers in the range [1, N] using Sieve of Eratosthenes.
  • Iterate over the range [2, N] and for each element in the given range, check if the sieve[i] and sieve[i – 2] is true or not. If found to be true then increment the value of cntPairs by 2.
  • Finally, print the value of cntPairs.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find all prime
// numbers in the range [1, N]
vector<bool> SieveOfEratosthenes(
    int N)
{
   
    // isPrime[i]: Stores if i is
    // a prime number or not
    vector<bool> isPrime(N, true);
   
    isPrime[0] = false;
    isPrime[1] = false;
   
    // Calculate all prime numbers up to
    // Max using Sieve of Eratosthenes
    for (int p = 2; p * p <= N; p++) {
   
        // If P is a prime number
        if (isPrime[p]) {
   
            // Set all multiple of P
            // as non-prime
            for (int i = p * p; i <= N;
                 i += p) {
   
                // Update isPrime
                isPrime[i] = false;
            }
        }
    }
    return isPrime;
}
 
// Function to count pairs of
// prime numbers in the range [1, N]
// whose difference is prime
int cntPairsdiffOfPrimeisPrime(int N)
{
     
    // Function to count pairs of
    // prime numbers whose difference  
    // is also a prime number
    int cntPairs = 0;
     
     
    // isPrime[i]: Stores if i is
    // a prime number or not
    vector<bool> isPrime
          = SieveOfEratosthenes(N);
     
    // Iterate over the range [2, N]
    for (int i = 2; i <= N; i++) {
         
         
        // If i and i - 2 is
        // a prime number
        if (isPrime[i] &&
            isPrime[i - 2]) {
               
               
            // Update cntPairs
            cntPairs += 2;
        }
    }
    return cntPairs;
}
 
// Driver Code
int main()
{
    int N = 5;
    cout << cntPairsdiffOfPrimeisPrime(N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
     
// Function to find all prime
// numbers in the range [1, N]
public static boolean[] SieveOfEratosthenes(int N)
{
     
    // isPrime[i]: Stores if i is
    // a prime number or not
    boolean[] isPrime = new boolean[N + 1];
    Arrays.fill(isPrime, true);
 
    isPrime[0] = false;
    isPrime[1] = false;
 
    // Calculate all prime numbers up to
    // Max using Sieve of Eratosthenes
    for(int p = 2; p * p <= N; p++)
    {
         
        // If P is a prime number
        if (isPrime[p])
        {
             
            // Set all multiple of P
            // as non-prime
            for(int i = p * p; i <= N; i += p)
            {
                 
                // Update isPrime
                isPrime[i] = false;
            }
        }
    }
    return isPrime;
}
 
// Function to count pairs of
// prime numbers in the range [1, N]
// whose difference is prime
public static int cntPairsdiffOfPrimeisPrime(int N)
{
     
    // Function to count pairs of
    // prime numbers whose difference
    // is also a prime number
    int cntPairs = 0;
 
    // isPrime[i]: Stores if i is
    // a prime number or not
    boolean[] isPrime = SieveOfEratosthenes(N);
 
    // Iterate over the range [2, N]
    for(int i = 2; i <= N; i++)
    {
         
        // If i and i - 2 is
        // a prime number
        if (isPrime[i] && isPrime[i - 2])
        {
             
            // Update cntPairs
            cntPairs += 2;
        }
    }
    return cntPairs;
}
 
// Driver Code
public static void main(String args[])
{
    int N = 5;
     
    System.out.println(cntPairsdiffOfPrimeisPrime(N));
}
}
 
// This code is contributed by hemanth gadarla

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
from math import sqrt
 
# Function to find all prime
# numbers in the range [1, N]
def SieveOfEratosthenes(N):
     
    # isPrime[i]: Stores if i is
    # a prime number or not
    isPrime = [True for i in range(N + 1)]
   
    isPrime[0] = False
    isPrime[1] = False
   
    # Calculate all prime numbers up to
    # Max using Sieve of Eratosthenes
    for p in range(2, int(sqrt(N)) + 1, 1):
         
        # If P is a prime number
        if (isPrime[p]):
             
            # Set all multiple of P
            # as non-prime
            for i in range(p * p, N + 1, p):
                 
                # Update isPrime
                isPrime[i] = False
                 
    return isPrime
 
# Function to count pairs of
# prime numbers in the range [1, N]
# whose difference is prime
def cntPairsdiffOfPrimeisPrime(N):
     
    # Function to count pairs of
    # prime numbers whose difference  
    # is also a prime number
    cntPairs = 0
     
    # isPrime[i]: Stores if i is
    # a prime number or not
    isPrime = SieveOfEratosthenes(N)
     
    # Iterate over the range [2, N]
    for i in range(2, N + 1, 1):
         
        # If i and i - 2 is
        # a prime number
        if (isPrime[i] and isPrime[i - 2]):
             
            # Update cntPairs
            cntPairs += 2
 
    return cntPairs
 
# Driver Code
if __name__ == '__main__':
     
    N = 5
     
    print(cntPairsdiffOfPrimeisPrime(N))
 
# This code is contributed by ipg2016107

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach 
using System;
  
class GFG{
     
// Function to find all prime
// numbers in the range [1, N]
public static bool[] SieveOfEratosthenes(int N)
{
     
    // isPrime[i]: Stores if i is
    // a prime number or not
    bool[] isPrime = new bool[N + 1];
    for(int i = 0; i < N + 1; i++)
    {
        isPrime[i] = true;
    }
  
    isPrime[0] = false;
    isPrime[1] = false;
  
    // Calculate all prime numbers up to
    // Max using Sieve of Eratosthenes
    for(int p = 2; p * p <= N; p++)
    {
         
        // If P is a prime number
        if (isPrime[p])
        {
             
            // Set all multiple of P
            // as non-prime
            for(int i = p * p; i <= N; i += p)
            {
                 
                // Update isPrime
                isPrime[i] = false;
            }
        }
    }
    return isPrime;
}
  
// Function to count pairs of
// prime numbers in the range [1, N]
// whose difference is prime
public static int cntPairsdiffOfPrimeisPrime(int N)
{
     
    // Function to count pairs of
    // prime numbers whose difference
    // is also a prime number
    int cntPairs = 0;
  
    // isPrime[i]: Stores if i is
    // a prime number or not
    bool[] isPrime = SieveOfEratosthenes(N);
  
    // Iterate over the range [2, N]
    for(int i = 2; i <= N; i++)
    {
         
        // If i and i - 2 is
        // a prime number
        if (isPrime[i] && isPrime[i - 2])
        {
             
            // Update cntPairs
            cntPairs += 2;
        }
    }
    return cntPairs;
}
  
// Driver Code
public static void Main()
{
    int N = 5;
      
    Console.WriteLine(cntPairsdiffOfPrimeisPrime(N));
}
}
 
// This code is contributed by susmitakundugoaldanga

chevron_right


Output: 

2











 

Time Complexity: O(N * log(log(N))) 
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :