Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count prime numbers that can be expressed as sum of consecutive prime numbers

  • Difficulty Level : Medium
  • Last Updated : 26 Apr, 2021

Given an integer N, the task is to find the number of prime numbers up to N that can be expressed as a sum of consecutive primes.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Input: N = 45
Output: 3
Explanation:
Below are the prime numbers up to 45 that can be expressed as sum of consecutive prime numbers:

  • 5 = 2 + 3
  • 17 = 2 + 3 + 5 + 7
  • 41 = 2 + 3 + 5 + 7 + 11 + 13

Therefore, the count is 3. 



Input: N = 4
Output:

Approach: The idea is to use the Primality Test Algorithm. Using this, all primes not exceeding N can be found. After that, each number that can be expressed as consecutive primes can be found. Follow the steps below to solve the problem:

  1. Traverse through each number from 1 to N, checking if it is a prime, and stored it in a vector.
  2. Sort all the stored prime numbers in the vector.
  3. Let there be X primes present in the vector. Initialize sum as the smallest prime found i.e., element at index 0 in the vector.
  4. Iterate over the range [1, X – 1] and add each element to the sum.
  5. After adding, check if the sum is a prime or not and the sum is less than N or not. If it found to be true, then increment the counter. Otherwise, if the sum becomes greater than N, break the loop.
  6. After all the above steps, print the count of prime numbers stored on the counter.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a
// number is prime or not
int isprm(int n)
{
    // Base Case
    if (n <= 1)
        return 0;
    if (n <= 3)
        return 1;
    if (n % 2 == 0 || n % 3 == 0)
        return 0;
 
    // Iterate till [5, sqrt(N)] to
    // detect primality of numbers
    for (int i = 5;
         i * i <= n; i = i + 6) {
 
        // If N is divisible by i
        // or i + 2
        if (n % i == 0 || n % (i + 2) == 0)
            return 0;
    }
 
    // Return 1 if N is prime
    return 1;
}
 
// Function to count the prime numbers
// which can be expressed as sum of
// consecutive prime numbers
int countprime(int n)
{
    // Initialize count as 0
    int count = 0;
 
    // Stores prime numbers
    vector<int> primevector;
 
    for (int i = 2; i <= n; i++) {
 
        // If i is prime
        if (isprm(i) == 1) {
            primevector.push_back(i);
        }
    }
 
    // Initialize the sum
    int sum = primevector[0];
 
    // Find all required primes upto N
    for (int i = 1;
         i < primevector.size(); i++) {
 
        // Add it to the sum
        sum += primevector[i];
        if (sum > n)
            break;
        if (isprm(sum) == 1) {
            count++;
        }
    }
 
    // Return the final count
    return count;
}
 
// Driver Code
int main()
{
    // Given number N
    int N = 45;
 
    // Function Call
    cout << countprime(N);
 
    return 0;
}

Java




// Java program for
// the above approach
import java.util.*;
class GFG{
 
// Function to check if a
// number is prime or not
static int isprm(int n)
{
  // Base Case
  if (n <= 1)
    return  0;
  if (n <= 3)
    return 1;
  if (n % 2 == 0 ||
      n % 3 == 0)
    return 0;
 
  // Iterate till [5, Math.sqrt(N)]
  // to detect primality of numbers
  for (int i = 5; i * i <= n;
           i = i + 6)
  {
    // If N is divisible by i
    // or i + 2
    if (n % i == 0 ||
        n % (i + 2) == 0)
      return 0;
  }
 
  // Return 1 if N is prime
  return 1;
}
 
// Function to count the prime numbers
// which can be expressed as sum of
// consecutive prime numbers
static int countprime(int n)
{
  // Initialize count as 0
  int count = 0;
 
  // Stores prime numbers
  Vector<Integer> primevector =
                  new Vector<>();
 
  for (int i = 2; i <= n; i++)
  {
    // If i is prime
    if (isprm(i) == 1)
    {
      primevector.add(i);
    }
  }
 
  // Initialize the sum
  int sum = primevector.elementAt(0);
 
  // Find all required primes upto N
  for (int i = 1;
           i < primevector.size(); i++)
  {
    // Add it to the sum
    sum += primevector.elementAt(i);
    if (sum > n)
      break;
    if (isprm(sum) == 1)
    {
      count++;
    }
  }
 
  // Return the final count
  return count;
}
 
// Driver Code
public static void main(String[] args)
{
  // Given number N
  int N = 45;
 
  // Function Call
  System.out.print(countprime(N));
}
}
 
// This code is contributed by gauravrajput1

Python3




# Python3 program for the above approach
 
# Function to check if a
# number is prime or not
def isprm(n):
     
    # Base Case
    if (n <= 1):
        return 0
    if (n <= 3):
        return 1
    if (n % 2 == 0 or n % 3 == 0):
        return 0
 
    # Iterate till [5, sqrt(N)] to
    # detect primality of numbers
    i = 5
    while (i * i <= n):
 
        # If N is divisible by i
        # or i + 2
        if (n % i == 0 or
            n % (i + 2) == 0):
            return 0
         
        i = i + 6
     
    # Return 1 if N is prime
    return 1
 
# Function to count the prime numbers
# which can be expressed as sum of
# consecutive prime numbers
def countprime(n):
     
    # Initialize count as 0
    count = 0
 
    # Stores prime numbers
    primevector = []
 
    for i in range(2, n + 1):
 
        # If i is prime
        if (isprm(i) == 1):
            primevector.append(i)
         
    # Initialize the sum
    sum = primevector[0]
 
    # Find all required primes upto N
    for i in range(1, len(primevector)):
 
        # Add it to the sum
        sum += primevector[i]
        if (sum > n):
            break
        if (isprm(sum) == 1):
            count += 1
 
    # Return the final count
    return count
 
# Driver Code
 
# Given number N
N = 45
 
# Function call
print(countprime(N))
 
# This code is contributed by code_hunt

C#




// C# program for
// the above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Function to check if a
// number is prime or not
static int isprm(int n)
{
  // Base Case
  if (n <= 1)
    return  0;
  if (n <= 3)
    return 1;
  if (n % 2 == 0 ||
      n % 3 == 0)
    return 0;
 
  // Iterate till [5, Math.Sqrt(N)]
  // to detect primality of numbers
  for (int i = 5; i * i <= n;
           i = i + 6)
  {
    // If N is divisible by i
    // or i + 2
    if (n % i == 0 ||
        n % (i + 2) == 0)
      return 0;
  }
 
  // Return 1 if N is prime
  return 1;
}
 
// Function to count the prime numbers
// which can be expressed as sum of
// consecutive prime numbers
static int countprime(int n)
{
  // Initialize count as 0
  int count = 0;
 
  // Stores prime numbers
  List<int> primevector = new List<int>();
 
  for (int i = 2; i <= n; i++)
  {
    // If i is prime
    if (isprm(i) == 1)
    {
      primevector.Add(i);
    }
  }
 
  // Initialize the sum
  int sum = primevector[0];
 
  // Find all required primes upto N
  for (int i = 1; i < primevector.Count; i++)
  {
    // Add it to the sum
    sum += primevector[i];
    if (sum > n)
      break;
    if (isprm(sum) == 1)
    {
      count++;
    }
  }
 
  // Return the readonly count
  return count;
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given number N
  int N = 45;
 
  // Function Call
  Console.Write(countprime(N));
}
}
 
// This code is contributed by shikhasingrajput

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to check if a
// number is prime or not
function isprm(n)
{
    // Base Case
    if (n <= 1)
        return 0;
    if (n <= 3)
        return 1;
    if (n % 2 == 0 || n % 3 == 0)
        return 0;
 
    // Iterate till [5, sqrt(N)] to
    // detect primality of numbers
    for (var i = 5;
         i * i <= n; i = i + 6) {
 
        // If N is divisible by i
        // or i + 2
        if (n % i == 0 || n % (i + 2) == 0)
            return 0;
    }
 
    // Return 1 if N is prime
    return 1;
}
 
// Function to count the prime numbers
// which can be expressed as sum of
// consecutive prime numbers
function countprime(n)
{
    // Initialize count as 0
    var count = 0;
 
    // Stores prime numbers
    var primevector = [];
 
    for (var i = 2; i <= n; i++) {
 
        // If i is prime
        if (isprm(i) == 1) {
            primevector.push(i);
        }
    }
 
    // Initialize the sum
    var sum = primevector[0];
 
    // Find all required primes upto N
    for (var i = 1;
         i < primevector.length; i++) {
 
        // Add it to the sum
        sum += primevector[i];
        if (sum > n)
            break;
        if (isprm(sum) == 1) {
            count++;
        }
    }
 
    // Return the final count
    return count;
}
 
// Driver Code
// Given number N
var N = 45;
// Function Call
document.write( countprime(N));
 
</script>
Output: 
3

Time Complexity: O(N3/2)
Auxiliary Space: O(√N)

Efficient Approach: The above approach can be optimized by precomputing the prime numbers up to N using the Sieve of Eratosthenes.

Time Complexity: O(N*log(logN))
Auxiliary Space: O(log(logN))




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!