Count positive integers with 0 as a digit and maximum ‘d’ digits
Given a number d, representing the number of digits of a number. Find the total count of positive integers which have at-least one zero in them and consist d or less digits.
Examples: Input : d = 1 Output : 0 There's no natural number of 1 digit that contains a zero. Input : d = 2 Output : 9 Input : d = 3 Output : 180 For d = 3, we've to count numbers from 1 to 999, that have atleast one zero in them. Similarly for d=4, we'd check every number from 1 to 9999.
We strongly recommend that you click here and practice it, before moving on to the solution.
This is mainly an extension of below post.
Count ‘d’ digit positive integers with 0 as a digit.
If we observe carefully the problem is very similar to the one which we had discussed in our first set. For a given d, we can get the required answer if we find numbers that have 0s and consist of digits 1, 2, 3….., d. Finally we can add them to get the output.
Below is the program for the same.
C++
// C++ program to find the count of positive integer of a // given number of digits that contain atleast one zero #include<bits/stdc++.h> using namespace std; // Returns count of 'd' digit integers have 0 as a digit int findCount( int d) { return 9*( pow (10,d-1) - pow (9,d-1)); } // utility function to count the required answer int findCountUpto( int d) { // Count of numbers with digits smaller than // or equal to d. int totalCount = 0; for ( int i=1; i<=d; i++) totalCount += findCount(i); return totalCount; } // Driver Code int main() { int d = 1; cout << findCountUpto(d) << endl; d = 2; cout << findCountUpto(d) << endl; d = 4; cout << findCountUpto(d) << endl; return 0; } |
Java
// Java program to find the count of // positive integer of agiven number // of digits that contain atleast one zero import java.io.*; import java.math.*; class GFG { // Returns count of 'd' digit // integers have 0 as a digit static int findCount( int d) { return 9 * ( int )((Math.pow( 10 , d - 1 ) - Math.pow( 9 , d - 1 ))); } // utility function to count // the required answer static int findCountUpto( int d) { // Count of numbers with digits // smaller than or equal to d. int totalCount = 0 ; for ( int i = 1 ; i <= d; i++) totalCount += findCount(i); return totalCount; } // Driver Code public static void main(String args[]) { int d = 1 ; System.out.println(findCountUpto(d)); d = 2 ; System.out.println( findCountUpto(d) ); d = 4 ; System.out.println(findCountUpto(d)); } } /*This code is contributed by Nikita Tiwari.*/ |
Python3
# Python 3 program to find the # count of natural numbers upto a # given number of digits that # contain atleast one zero import math # Utility function to calculate # the count of natural numbers # upto a given number of digits # that contain atleast one zero def findCountUpto(d) : # Sum of two GP series GP1_Sum = 9 * (( int )((math. pow ( 10 ,d)) - 1 ) / / 9 ) GP2_Sum = 9 * (( int )((math. pow ( 9 ,d)) - 1 ) / / 8 ) return GP1_Sum - GP2_Sum # Driver Code d = 1 print (findCountUpto(d)) d = 2 print (findCountUpto(d)) d = 4 print (findCountUpto(d)) # This code is contributed by Nikita Tiwari. |
C#
// C# program to find the count of // positive integer of agiven number // of digits that contain atleast // one zero using System; class GFG { // Returns count of 'd' digit // integers have 0 as a digit static int findCount( int d) { return 9 * ( int )((Math.Pow(10, d - 1) - Math.Pow(9, d - 1))); } // utility function to count // the required answer static int findCountUpto( int d) { // Count of numbers with digits // smaller than or equal to d. int totalCount = 0; for ( int i = 1; i <= d; i++) totalCount += findCount(i); return totalCount; } // Driver Code public static void Main() { int d = 1; Console.WriteLine(findCountUpto(d)); d = 2; Console.WriteLine( findCountUpto(d) ); d = 4; Console.WriteLine(findCountUpto(d)); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to find the count // of positive integer of a given // number of digits that contain // atleast one zero // Returns count of 'd' digit // integers have 0 as a digit function findCount( $d ) { return 9 * (pow(10, $d - 1) - pow(9, $d - 1)); } // function to count // the required answer function findCountUpto( $d ) { // Count of numbers with // digits smaller than // or equal to d. $totalCount = 0; for ( $i = 1; $i <= $d ; $i ++) $totalCount += findCount( $i ); return $totalCount ; } // Driver Code { $d = 1; echo findCountUpto( $d ), "\n" ; $d = 2; echo findCountUpto( $d ), "\n" ; $d = 4; echo findCountUpto( $d ) ; return 0; } // This code is contributed by nitin mittal. ?> |
Javascript
<script> // JavaScript program to find the count of // positive integer of agiven number // of digits that contain atleast one zero // Returns count of 'd' digit // integers have 0 as a digit function findCount(d) { return 9 * ((Math.pow(10, d - 1) - Math.pow(9, d - 1))); } // utility function to count // the required answer function findCountUpto(d) { // Count of numbers with digits // smaller than or equal to d. let totalCount = 0; for (let i = 1; i <= d; i++) totalCount += findCount(i); return totalCount; } // Driver Code let d = 1; document.write(findCountUpto(d) + "<br/>" ); d = 2; document.write( findCountUpto(d) + "<br/>" ); d = 4; document.write(findCountUpto(d) + "<br/>" ); // This code is contributed by target_2. </script> |
Output :
0 9 2619
Time Complexity : O(d)
Auxiliary Space : O(1)
Can we make the solution more efficient ?
Yes, if we see closely, the required answer is obtained using the sum of following two Geometric Progressions:
i'th term of G.P. 1 = 9*10i - 1 where 1 <= i <= d i'th term of G.P. 2 = 9*9i - 1 where 1 <= i <= d The final answer is nothing but,Sum of G.P 1 = 9*(10d - 1)/(10-1) = 9*(10d - 1)/9Similarly,Sum of G.P 2 = 9*(9d - 1)/(9-1) = 9*(9d - 1)/8Using the above facts, we can optimize the solution to run in O(1)
Below is an efficient program for the same.
C++
// C++ program to find the count of natural numbers upto a // given number of digits that contain atleast one zero #include<bits/stdc++.h> using namespace std; // Utility function to calculate the count of natural numbers // upto a given number of digits that contain atleast one zero int findCountUpto( int d) { // Sum of two GP series int GP1_Sum = 9*(( pow (10,d)-1)/9); int GP2_Sum = 9*(( pow (9,d)-1)/8); return GP1_Sum - GP2_Sum; } // Driver Code int main() { int d = 1; cout << findCountUpto(d) << endl; d = 2; cout << findCountUpto(d) << endl; d = 4; cout << findCountUpto(d) << endl; return 0; } |
Java
// Java program to find the count // of natural numbers upto a // given number of digits // that contain atleast one zero import java.io.*; import java.math.*; class GFG { // Utility function to calculate // the count of natural numbers // upto a given number of digits // that contain atleast one zero static int findCountUpto( int d) { // Sum of two GP series int GP1_Sum = 9 * (( int )((Math.pow( 10 , d)) - 1 ) / 9 ); int GP2_Sum = 9 * (( int )((Math.pow( 9 , d)) - 1 ) / 8 ); return GP1_Sum - GP2_Sum; } // Driver Code public static void main(String args[]) { int d = 1 ; System.out.println(findCountUpto(d)); d = 2 ; System.out.println(findCountUpto(d)); d = 4 ; System.out.println(findCountUpto(d)); } } /* This code is contributed by Nikita Tiwari.*/ |
Python3
# Python 3 program to find the # count of positive integer of a # given number of digits that # contain atleast one zero import math # Returns count of 'd' digit # integers have 0 as a digit def findCount(d) : return 9 * ( pow ( 10 ,d - 1 ) - pow ( 9 ,d - 1 )); # utility function to count # the required answer def findCountUpto(d) : # Count of numbers with # digits smaller than # or equal to d. totalCount = 0 for i in range ( 1 ,d + 1 ) : totalCount = totalCount + findCount(i) return totalCount # Driver Code d = 1 print (findCountUpto(d)) d = 2 print (findCountUpto(d)) d = 4 print (findCountUpto(d)) # This code is contributed by Nikita Tiwari. |
C#
// C# program to find the count // of natural numbers upto a // given number of digits // that contain atleast one zero using System; class GFG { // Utility function to calculate // the count of natural numbers // upto a given number of digits // that contain atleast one zero static int findCountUpto( int d) { // Sum of two GP series int GP1_Sum = 9 * (( int )((Math.Pow(10, d)) - 1) / 9); int GP2_Sum = 9 * (( int )((Math.Pow(9, d)) - 1) / 8); return GP1_Sum - GP2_Sum; } // Driver Code public static void Main() { int d = 1; Console.WriteLine(findCountUpto(d)); d = 2; Console.WriteLine(findCountUpto(d)); d = 4; Console.WriteLine(findCountUpto(d)); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to find the count // of natural numbers upto a // given number of digits that // contain atleast one zero // function to calculate the // count of natural numbers // upto a given number of digits // that contain atleast one zero function findCountUpto( $d ) { // Sum of two GP series $GP1_Sum = 9 * ((pow(10, $d ) - 1) / 9); $GP2_Sum = 9 * ((pow(9, $d ) - 1) / 8); return $GP1_Sum - $GP2_Sum ; } // Driver Code $d = 1; echo findCountUpto( $d ), "\n" ; $d = 2; echo findCountUpto( $d ), "\n" ; $d = 4; echo findCountUpto( $d ) , "\n" ; // This code is contributed by anuj_67. ?> |
Javascript
// Javascript program to find the count // of natural numbers upto a // given number of digits that // contain atleast one zero // function to calculate the // count of natural numbers // upto a given number of digits // that contain atleast one zero function findCountUpto(d) { // Sum of two GP series let GP1_Sum = 9 * ((Math.pow(10, d) - 1) / 9); let GP2_Sum = 9 * ((Math.pow(9, d) - 1) / 8); return GP1_Sum - GP2_Sum; } // Driver Code let d = 1; document.write(findCountUpto(d) + "<br>" ); d = 2; document.write(findCountUpto(d) + "<br>" ); d = 4; document.write(findCountUpto(d) + "<br>" ); // This code is contributed by _saurabh_jaiswal. |
Output :
0 9 2619
Time Complexity : O(logd) because inbuilt pow function is used
Auxiliary Space : O(1)
In the next set we’d see another problem of increased difficulty that can be solved using very similar technique.
This article is contributed by Ashutosh Kumar. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...