# Count permutations of given array that generates the same Binary Search Tree (BST)

Given an array, arr[] of size N consisting of elements from the range [1, N], that represents the order, in which the elements are inserted into a Binary Search Tree, the task is to count the number of ways to rearrange the given array to get the same BST.

Examples:

Input: arr[ ] ={3, 4, 5, 1, 2}
Output: 6
Explanation :
The permutations of the array which represent the same BST are:{{3, 4, 5, 1, 2}, {3, 1, 2, 4, 5}, {3, 1, 4, 2, 5}, {3, 1, 4, 5, 2}, {3, 4, 1, 2, 5}, {3, 4, 1, 5, 2}}. Therefore, the output is 6.

Input: arr[ ] ={2, 1, 6, 5, 4, 3}
Output: 5

Approach: The idea is to first fix the root node and then recursively count the number of ways to rearrange the elements of the left subtree and the elements of the right subtree in such a way that the relative order within the elements of the left subtree and right subtree must be same. Here is the recurrence relation:

countWays(arr) = countWays(left) * countWays(right) * combinations(N, X).
left: Contains all the elements in the left subtree(Elements which are lesser than the root)
right: Contains all the elements in the right subtree(Elements which are greater than the root)
N = Total number of elements in arr[]
X = Total number of elements in left subtree.

Follow the steps below to solve the problem:

1. Fix the root node of BST, and store the elements of the left subtree(Elements which are lesser than arr[0]), say ctLeft[], and store the elements of the right subtree(Elements which are lesser than arr[0]), say ctRight[].
2. To generate identical BST, maintain the relative order within the elements of left subtree and the right subtree.
3. Calculate the number of ways to rearrange the array to generate BST using the above-mentioned recurrence relation.

## C++

 `// C++ program to implement ` `// the above approach ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to precompute the ` `// factorial of 1 to N ` `void` `calculateFact(``int` `fact[], ``int` `N) ` `{ ` `    ``fact[0] = 1; ` `    ``for` `(``long` `long` `int` `i = 1; i < N; i++) { ` `        ``fact[i] = fact[i - 1] * i; ` `    ``} ` `} ` ` `  `// Function to get the value of nCr ` `int` `nCr(``int` `fact[], ``int` `N, ``int` `R) ` `{ ` `    ``if` `(R > N) ` `        ``return` `0; ` ` `  `    ``// nCr= fact(n)/(fact(r)*fact(n-r)) ` `    ``int` `res = fact[N] / fact[R]; ` `    ``res /= fact[N - R]; ` ` `  `    ``return` `res; ` `} ` ` `  `// Function to count the number of ways ` `// to rearrange the array to obtain same BST ` `int` `countWays(vector<``int``>& arr, ``int` `fact[]) ` `{ ` `    ``// Store the size of the array ` `    ``int` `N = arr.size(); ` ` `  `    ``// Base case ` `    ``if` `(N <= 2) { ` `        ``return` `1; ` `    ``} ` ` `  `    ``// Store the elements of the ` `    ``// left subtree of BST ` `    ``vector<``int``> leftSubTree; ` ` `  `    ``// Store the elements of the ` `    ``// right subtree of BST ` `    ``vector<``int``> rightSubTree; ` ` `  `    ``// Store the root node ` `    ``int` `root = arr[0]; ` ` `  `    ``for` `(``int` `i = 1; i < N; i++) { ` ` `  `        ``// Push all the elements ` `        ``// of the left subtree ` `        ``if` `(arr[i] < root) { ` `            ``leftSubTree.push_back( ` `                ``arr[i]); ` `        ``} ` ` `  `        ``// Push all the elements ` `        ``// of the right subtree ` `        ``else` `{ ` `            ``rightSubTree.push_back( ` `                ``arr[i]); ` `        ``} ` `    ``} ` ` `  `    ``// Store the size of leftSubTree ` `    ``int` `N1 = leftSubTree.size(); ` ` `  `    ``// Store the size of rightSubTree ` `    ``int` `N2 = rightSubTree.size(); ` ` `  `    ``// Recurrence relation ` `    ``int` `countLeft ` `        ``= countWays(leftSubTree, ` `                    ``fact); ` `    ``int` `countRight ` `        ``= countWays(rightSubTree, ` `                    ``fact); ` ` `  `    ``return` `nCr(fact, N - 1, N1) ` `           ``* countLeft * countRight; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` ` `  `    ``vector<``int``> arr; ` `    ``arr = { 3, 4, 5, 1, 2 }; ` ` `  `    ``// Store the size of arr ` `    ``int` `N = arr.size(); ` ` `  `    ``// Store the factorial up to N ` `    ``int` `fact[N]; ` ` `  `    ``// Precompute the factorial up to N ` `    ``calculateFact(fact, N); ` ` `  `    ``cout << countWays(arr, fact); ` ` `  `    ``return` `0; ` `}`

## Java

 `// Java program to implement ` `// the above approach ` `import` `java.util.*; ` ` `  `class` `GFG{ ` ` `  `// Function to precompute the ` `// factorial of 1 to N ` `static` `void` `calculateFact(``int` `fact[], ``int` `N) ` `{ ` `    ``fact[``0``] = ``1``; ` `    ``for``(``int` `i = ``1``; i < N; i++) ` `    ``{ ` `        ``fact[i] = fact[i - ``1``] * i; ` `    ``} ` `} ` ` `  `// Function to get the value of nCr ` `static` `int` `nCr(``int` `fact[], ``int` `N, ``int` `R) ` `{ ` `    ``if` `(R > N) ` `        ``return` `0``; ` ` `  `    ``// nCr= fact(n)/(fact(r)*fact(n-r)) ` `    ``int` `res = fact[N] / fact[R]; ` `    ``res /= fact[N - R]; ` ` `  `    ``return` `res; ` `} ` ` `  `// Function to count the number of ways ` `// to rearrange the array to obtain same BST ` `static` `int` `countWays(Vector arr, ` `                     ``int` `fact[]) ` `{ ` `     `  `    ``// Store the size of the array ` `    ``int` `N = arr.size(); ` ` `  `    ``// Base case ` `    ``if` `(N <= ``2``)  ` `    ``{ ` `        ``return` `1``; ` `    ``} ` ` `  `    ``// Store the elements of the ` `    ``// left subtree of BST ` `    ``Vector leftSubTree = ``new` `Vector(); ` ` `  `    ``// Store the elements of the ` `    ``// right subtree of BST ` `    ``Vector rightSubTree = ``new` `Vector(); ` ` `  `    ``// Store the root node ` `    ``int` `root = arr.get(``0``); ` ` `  `    ``for``(``int` `i = ``1``; i < N; i++) ` `    ``{ ` `         `  `        ``// Push all the elements ` `        ``// of the left subtree ` `        ``if` `(arr.get(i) < root) ` `        ``{ ` `            ``leftSubTree.add(arr.get(i)); ` `        ``} ` ` `  `        ``// Push all the elements ` `        ``// of the right subtree ` `        ``else`  `        ``{ ` `            ``rightSubTree.add(arr.get(i)); ` `        ``} ` `    ``} ` ` `  `    ``// Store the size of leftSubTree ` `    ``int` `N1 = leftSubTree.size(); ` ` `  `    ``// Store the size of rightSubTree ` `    ``int` `N2 = rightSubTree.size(); ` ` `  `    ``// Recurrence relation ` `    ``int` `countLeft = countWays(leftSubTree, ` `                              ``fact); ` `    ``int` `countRight = countWays(rightSubTree, ` `                               ``fact); ` ` `  `    ``return` `nCr(fact, N - ``1``, N1) *  ` `             ``countLeft * countRight; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `[]a = { ``3``, ``4``, ``5``, ``1``, ``2` `}; ` `     `  `    ``Vector arr = ``new` `Vector(); ` `    ``for``(``int` `i : a) ` `        ``arr.add(i); ` `         `  `    ``// Store the size of arr ` `    ``int` `N = a.length; ` ` `  `    ``// Store the factorial up to N ` `    ``int` `[]fact = ``new` `int``[N]; ` ` `  `    ``// Precompute the factorial up to N ` `    ``calculateFact(fact, N); ` ` `  `    ``System.out.print(countWays(arr, fact)); ` `} ` `} ` ` `  `// This code is contributed by Amit Katiyar`

## C#

 `// C# program to implement ` `// the above approach ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG{ ` ` `  `// Function to precompute the ` `// factorial of 1 to N ` `static` `void` `calculateFact(``int` `[]fact, ``int` `N) ` `{ ` `    ``fact[0] = 1; ` `    ``for``(``int` `i = 1; i < N; i++) ` `    ``{ ` `        ``fact[i] = fact[i - 1] * i; ` `    ``} ` `} ` ` `  `// Function to get the value of nCr ` `static` `int` `nCr(``int` `[]fact, ``int` `N, ``int` `R) ` `{ ` `    ``if` `(R > N) ` `        ``return` `0; ` ` `  `    ``// nCr= fact(n)/(fact(r)*fact(n-r)) ` `    ``int` `res = fact[N] / fact[R]; ` `    ``res /= fact[N - R]; ` ` `  `    ``return` `res; ` `} ` ` `  `// Function to count the number of ways ` `// to rearrange the array to obtain same BST ` `static` `int` `countWays(List<``int``> arr, ` `                     ``int` `[]fact) ` `{ ` `     `  `    ``// Store the size of the array ` `    ``int` `N = arr.Count; ` ` `  `    ``// Base case ` `    ``if` `(N <= 2)  ` `    ``{ ` `        ``return` `1; ` `    ``} ` ` `  `    ``// Store the elements of the ` `    ``// left subtree of BST ` `    ``List<``int``> leftSubTree = ``new` `List<``int``>(); ` ` `  `    ``// Store the elements of the ` `    ``// right subtree of BST ` `    ``List<``int``> rightSubTree = ``new` `List<``int``>(); ` ` `  `    ``// Store the root node ` `    ``int` `root = arr[0]; ` ` `  `    ``for``(``int` `i = 1; i < N; i++) ` `    ``{ ` `         `  `        ``// Push all the elements ` `        ``// of the left subtree ` `        ``if` `(arr[i] < root) ` `        ``{ ` `            ``leftSubTree.Add(arr[i]); ` `        ``} ` ` `  `        ``// Push all the elements ` `        ``// of the right subtree ` `        ``else` `        ``{ ` `            ``rightSubTree.Add(arr[i]); ` `        ``} ` `    ``} ` ` `  `    ``// Store the size of leftSubTree ` `    ``int` `N1 = leftSubTree.Count; ` ` `  `    ``// Store the size of rightSubTree ` `    ``int` `N2 = rightSubTree.Count; ` ` `  `    ``// Recurrence relation ` `    ``int` `countLeft = countWays(leftSubTree, ` `                              ``fact); ` `    ``int` `countRight = countWays(rightSubTree, ` `                               ``fact); ` ` `  `    ``return` `nCr(fact, N - 1, N1) *  ` `             ``countLeft * countRight; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `[]a = { 3, 4, 5, 1, 2 }; ` `     `  `    ``List<``int``> arr = ``new` `List<``int``>(); ` `    ``foreach``(``int` `i ``in` `a) ` `        ``arr.Add(i); ` `         `  `    ``// Store the size of arr ` `    ``int` `N = a.Length; ` ` `  `    ``// Store the factorial up to N ` `    ``int` `[]fact = ``new` `int``[N]; ` ` `  `    ``// Precompute the factorial up to N ` `    ``calculateFact(fact, N); ` ` `  `    ``Console.Write(countWays(arr, fact)); ` `} ` `} ` ` `  `// This code is contributed by Amit Katiyar`

Output:

```6
```

Time Complexity: O(N2)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : amit143katiyar

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.